BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 26500104)

  • 21. Comparative Transcriptome Analysis in Homo- and Hetero-Grafted Cucurbit Seedlings.
    Bantis F; Tsiolas G; Mouchtaropoulou E; Tsompanoglou I; Polidoros AN; Argiriou A; Koukounaras A
    Front Plant Sci; 2021; 12():691069. PubMed ID: 34777405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rootstock mediates transcriptional regulation of citrulline metabolism in grafted watermelon.
    Aslam A; Shengjie Z; Xuqiang L; Nan H; Wenge L
    Braz J Biol; 2021; 81(1):125-136. PubMed ID: 32321067
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Grafting-responsive miRNAs in cucumber and pumpkin seedlings identified by high-throughput sequencing at whole genome level.
    Li C; Li Y; Bai L; Zhang T; He C; Yan Y; Yu X
    Physiol Plant; 2014 Aug; 151(4):406-22. PubMed ID: 24279842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bottle gourd rootstock-grafting affects nitrogen metabolism in NaCl-stressed watermelon leaves and enhances short-term salt tolerance.
    Yang Y; Lu X; Yan B; Li B; Sun J; Guo S; Tezuka T
    J Plant Physiol; 2013 May; 170(7):653-61. PubMed ID: 23399406
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptomic Analysis of Short-Term Salt Stress Response in Watermelon Seedlings.
    Song Q; Joshi M; Joshi V
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32839408
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteomic study related to vascular connections in watermelon scions grafted onto bottle-gourd rootstock under different light intensities.
    Muneer S; Ko CH; Soundararajan P; Manivnnan A; Park YG; Jeong BR
    PLoS One; 2015; 10(3):e0120899. PubMed ID: 25789769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. QTL-Seq identifies quantitative trait loci of relative electrical conductivity associated with heat tolerance in bottle gourd (Lagenaria siceraria).
    Song H; Huang Y; Gu B
    PLoS One; 2020; 15(11):e0227663. PubMed ID: 33170849
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative transcriptome profiling of potassium starvation responsiveness in two contrasting watermelon genotypes.
    Fan M; Huang Y; Zhong Y; Kong Q; Xie J; Niu M; Xu Y; Bie Z
    Planta; 2014 Feb; 239(2):397-410. PubMed ID: 24185372
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome duplication improves the resistance of watermelon root to salt stress.
    Zhu H; Zhao S; Lu X; He N; Gao L; Dou J; Bie Z; Liu W
    Plant Physiol Biochem; 2018 Dec; 133():11-21. PubMed ID: 30384081
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Salinity tolerance of grafted watermelon seedlings.
    Bőhm V; Fekete D; Balázs G; Gáspár L; Kappel N
    Acta Biol Hung; 2017 Dec; 68(4):412-427. PubMed ID: 29262705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteomic Analysis of
    Zhang M; Xu J; Ren R; Liu G; Yao X; Lou L; Xu J; Yang X
    Front Plant Sci; 2021; 12():632758. PubMed ID: 33747013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pumpkin rootstock improves the growth and development of watermelon by enhancing uptake and transport of boron and regulating the gene expression.
    Shireen F; Nawaz MA; Xiong M; Ahmad A; Sohail H; Chen Z; Abouseif Y; Huang Y; Bie Z
    Plant Physiol Biochem; 2020 Sep; 154():204-218. PubMed ID: 32563044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accumulation of weathered p,p'-DDTs in grafted watermelon.
    Isleyen M; Sevim P; White JC
    J Agric Food Chem; 2012 Feb; 60(4):1113-21. PubMed ID: 22224752
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide expression profiling of leaves and roots of watermelon in response to low nitrogen.
    Nawaz MA; Chen C; Shireen F; Zheng Z; Sohail H; Afzal M; Ali MA; Bie Z; Huang Y
    BMC Genomics; 2018 Jun; 19(1):456. PubMed ID: 29898660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum.
    Ling N; Zhang W; Wang D; Mao J; Huang Q; Guo S; Shen Q
    PLoS One; 2013; 8(5):e63383. PubMed ID: 23700421
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles.
    Guo S; Liu J; Zheng Y; Huang M; Zhang H; Gong G; He H; Ren Y; Zhong S; Fei Z; Xu Y
    BMC Genomics; 2011 Sep; 12():454. PubMed ID: 21936920
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptome Profiling of Watermelon Root in Response to Short-Term Osmotic Stress.
    Yang Y; Mo Y; Yang X; Zhang H; Wang Y; Li H; Wei C; Zhang X
    PLoS One; 2016; 11(11):e0166314. PubMed ID: 27861528
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Grafting Watermelon Onto Pumpkin Increases Chilling Tolerance by Up Regulating
    Lu J; Cheng F; Huang Y; Bie Z
    Front Plant Sci; 2021; 12():812396. PubMed ID: 35242149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptomic and Metabolomic Analysis of the Effects of Exogenous Trehalose on Salt Tolerance in Watermelon (
    Yuan G; Sun D; An G; Li W; Si W; Liu J; Zhu Y
    Cells; 2022 Jul; 11(15):. PubMed ID: 35954182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide identification and expression analysis of the ClTCP transcription factors in Citrullus lanatus.
    Shi P; Guy KM; Wu W; Fang B; Yang J; Zhang M; Hu Z
    BMC Plant Biol; 2016 Apr; 16():85. PubMed ID: 27072931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.