These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 26500461)

  • 41. FISH Protocol for Myotonic Dystrophy Type 1 Cells.
    Klein AF; Arandel L; Marie J; Furling D
    Methods Mol Biol; 2020; 2056():203-215. PubMed ID: 31586350
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In Vitro Synthesis and RNA Structure Probing of CUG Triplet Repeat RNA.
    van Cruchten RTP; Wansink DG
    Methods Mol Biol; 2020; 2056():187-202. PubMed ID: 31586349
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coexpression of the CUG-binding protein reduces DM protein kinase expression in COS cells.
    Takahashi N; Sasagawa N; Usuki F; Kino Y; Kawahara H; Sorimachi H; Maeda T; Suzuki K; Ishiura S
    J Biochem; 2001 Nov; 130(5):581-7. PubMed ID: 11686919
    [TBL] [Abstract][Full Text] [Related]  

  • 44. RNA interference targeting CUG repeats in a mouse model of myotonic dystrophy.
    Sobczak K; Wheeler TM; Wang W; Thornton CA
    Mol Ther; 2013 Feb; 21(2):380-7. PubMed ID: 23183533
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy.
    Miller JW; Urbinati CR; Teng-Umnuay P; Stenberg MG; Byrne BJ; Thornton CA; Swanson MS
    EMBO J; 2000 Sep; 19(17):4439-48. PubMed ID: 10970838
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure and Dynamics of RNA Repeat Expansions That Cause Huntington's Disease and Myotonic Dystrophy Type 1.
    Chen JL; VanEtten DM; Fountain MA; Yildirim I; Disney MD
    Biochemistry; 2017 Jul; 56(27):3463-3474. PubMed ID: 28617590
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Choroid plexus mis-splicing and altered cerebrospinal fluid composition in myotonic dystrophy type 1.
    Nutter CA; Kidd BM; Carter HA; Hamel JI; Mackie PM; Kumbkarni N; Davenport ML; Tuyn DM; Gopinath A; Creigh PD; Sznajder ŁJ; Wang ET; Ranum LPW; Khoshbouei H; Day JW; Sampson JB; Prokop S; Swanson MS
    Brain; 2023 Oct; 146(10):4217-4232. PubMed ID: 37143315
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A simple ligand that selectively targets CUG trinucleotide repeats and inhibits MBNL protein binding.
    Arambula JF; Ramisetty SR; Baranger AM; Zimmerman SC
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16068-73. PubMed ID: 19805260
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Myotonic dystrophy: RNA-mediated muscle disease.
    Wheeler TM; Thornton CA
    Curr Opin Neurol; 2007 Oct; 20(5):572-6. PubMed ID: 17885447
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamic docking of small molecules targeting RNA CUG repeats causing myotonic dystrophy type 1.
    Wang KW; Riveros I; DeLoye J; Yildirim I
    Biophys J; 2023 Jan; 122(1):180-196. PubMed ID: 36348626
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [A pedigree with myotonic dystrophy: non-CTG, non-CCTG repeat expansion].
    Zhao XP; Xie HJ; Zheng HM; Yu ZL; Cui Y; Ding SJ; Ren DM; Tang GM
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2004 Oct; 21(5):459-62. PubMed ID: 15476170
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Molecular genetics of myotonic dystrophy--population genetics of the CTG repeat expansion of the MTPK gene].
    Yamagata H; Miki T; Ogihara T
    Nihon Rinsho; 1997 Dec; 55(12):3205-9. PubMed ID: 9436437
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Visualization of double-stranded RNAs from the myotonic dystrophy protein kinase gene and interactions with CUG-binding protein.
    Michalowski S; Miller JW; Urbinati CR; Paliouras M; Swanson MS; Griffith J
    Nucleic Acids Res; 1999 Sep; 27(17):3534-42. PubMed ID: 10446244
    [TBL] [Abstract][Full Text] [Related]  

  • 54. RNA Foci, CUGBP1, and ZNF9 are the primary targets of the mutant CUG and CCUG repeats expanded in myotonic dystrophies type 1 and type 2.
    Jones K; Jin B; Iakova P; Huichalaf C; Sarkar P; Schneider-Gold C; Schoser B; Meola G; Shyu AB; Timchenko N; Timchenko L
    Am J Pathol; 2011 Nov; 179(5):2475-89. PubMed ID: 21889481
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Molecular pathways to myotonic dystrophy].
    Ishiura S
    Nihon Rinsho; 2005 Mar; 63(3):515-21. PubMed ID: 15773354
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy.
    Wojtkowiak-Szlachcic A; Taylor K; Stepniak-Konieczna E; Sznajder LJ; Mykowska A; Sroka J; Thornton CA; Sobczak K
    Nucleic Acids Res; 2015 Mar; 43(6):3318-31. PubMed ID: 25753670
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Unexpected formation of parallel duplex in GAA and TTC trinucleotide repeats of Friedreich's ataxia.
    LeProust EM; Pearson CE; Sinden RR; Gao X
    J Mol Biol; 2000 Oct; 302(5):1063-80. PubMed ID: 11183775
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In silico discovery of substituted pyrido[2,3-d]pyrimidines and pentamidine-like compounds with biological activity in myotonic dystrophy models.
    González ÀL; Konieczny P; Llamusi B; Delgado-Pinar E; Borrell JI; Teixidó J; García-España E; Pérez-Alonso M; Estrada-Tejedor R; Artero R
    PLoS One; 2017; 12(6):e0178931. PubMed ID: 28582438
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Myotonic dystrophy as an RNA-mediated disease].
    Ishiura S
    Rinsho Shinkeigaku; 2005 Nov; 45(11):828-30. PubMed ID: 16447737
    [No Abstract]   [Full Text] [Related]  

  • 60. Defective mRNA in myotonic dystrophy accumulates at the periphery of nuclear splicing speckles.
    Holt I; Mittal S; Furling D; Butler-Browne GS; Brook JD; Morris GE
    Genes Cells; 2007 Sep; 12(9):1035-48. PubMed ID: 17825047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.