These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 26500531)

  • 1. Coordinated alpha and gamma control of muscles and spindles in movement and posture.
    Li S; Zhuang C; Hao M; He X; Marquez JC; Niu CM; Lan N
    Front Comput Neurosci; 2015; 9():122. PubMed ID: 26500531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular control of movement and posture by the corticospinal alpha-gamma motor systems.
    Si Li ; Xin He ; Ning Lan
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4079-82. PubMed ID: 25570888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reflex regulation of antagonist muscles for control of joint equilibrium position.
    Lan N; Li Y; Sun Y; Yang FS
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):60-71. PubMed ID: 15813407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusimotor control of spindle sensitivity regulates central and peripheral coding of joint angles.
    Lan N; He X
    Front Comput Neurosci; 2012; 6():66. PubMed ID: 22969720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postural control of arm and fingers through integration of movement commands.
    Albert ST; Hadjiosif AM; Jang J; Zimnik AJ; Soteropoulos DS; Baker SN; Churchland MM; Krakauer JW; Shadmehr R
    Elife; 2020 Feb; 9():. PubMed ID: 32043973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of an optimal control model of multi-joint arm movements.
    Lan N
    Biol Cybern; 1997 Feb; 76(2):107-17. PubMed ID: 9116076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Closed-loop cortical control of virtual reach and posture using Cartesian and joint velocity commands.
    Young D; Willett F; Memberg WD; Murphy B; Rezaii P; Walter B; Sweet J; Miller J; Shenoy KV; Hochberg LR; Kirsch RF; Ajiboye AB
    J Neural Eng; 2019 Apr; 16(2):026011. PubMed ID: 30523839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An alpha- to gamma-motoneurone collateral can mitigate velocity-dependent stretch reflexes during voluntary movement: A computational study.
    Niyo G; Almofeez LI; Erwin A; Valero-Cuevas FJ
    bioRxiv; 2024 Jun; ():. PubMed ID: 38106121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The composition of central programs subserving horizontal eye movements in man.
    Feldman AG
    Biol Cybern; 1981; 42(2):107-16. PubMed ID: 7326285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [From posture to initiation of movement].
    Agid Y
    Rev Neurol (Paris); 1990; 146(10):536-42. PubMed ID: 2263815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical networks for control of voluntary arm movements under variable force conditions.
    Bullock D; Cisek P; Grossberg S
    Cereb Cortex; 1998; 8(1):48-62. PubMed ID: 9510385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Velocity-based planning of rapid elbow movements expands the control scheme of the equilibrium point hypothesis.
    Suzuki M; Yamazaki Y
    J Comput Neurosci; 2005; 18(2):131-49. PubMed ID: 15714266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coding of movement- and force-related information in primate primary motor cortex: a computational approach.
    Guigon E; Baraduc P; Desmurget M
    Eur J Neurosci; 2007 Jul; 26(1):250-60. PubMed ID: 17573920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A model of central regulation of movement parameters].
    Adamovich SV; Fel'dman AG
    Biofizika; 1984; 29(2):306-9. PubMed ID: 6722197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An elbow joint movement control model with visual feedback.
    Xiao S; Li X
    Biomed Sci Instrum; 1997; 34():218-23. PubMed ID: 9603042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A numerical simulation of muscle spindle ensemble encoding during planar movement of the human arm.
    Wallace KR; Kerr GK
    Biol Cybern; 1996 Oct; 75(4):339-50. PubMed ID: 8953743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle spindle function during normal movement.
    Prochazka A
    Int Rev Physiol; 1981; 25():47-90. PubMed ID: 6451597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of spinal motor output by initial arm postures in anesthetized monkeys.
    Yaguchi H; Takei T; Kowalski D; Suzuki T; Mabuchi K; Seki K
    J Neurosci; 2015 Apr; 35(17):6937-45. PubMed ID: 25926468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.