These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26500671)

  • 1. Making better maize plants for sustainable grain production in a changing climate.
    Gong F; Wu X; Zhang H; Chen Y; Wang W
    Front Plant Sci; 2015; 6():835. PubMed ID: 26500671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of crop simulation modelling to aid ideotype design of future cereal cultivars.
    Rötter RP; Tao F; Höhn JG; Palosuo T
    J Exp Bot; 2015 Jun; 66(12):3463-76. PubMed ID: 25795739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing a high-yielding maize ideotype for a changing climate in Lombardy plain (northern Italy).
    Perego A; Sanna M; Giussani A; Chiodini ME; Fumagalli M; Pilu SR; Bindi M; Moriondo M; Acutis M
    Sci Total Environ; 2014 Nov; 499():497-509. PubMed ID: 24913890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance.
    Mills G; Sharps K; Simpson D; Pleijel H; Frei M; Burkey K; Emberson L; Uddling J; Broberg M; Feng Z; Kobayashi K; Agrawal M
    Glob Chang Biol; 2018 Oct; 24(10):4869-4893. PubMed ID: 30084165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing drought tolerance in C(4) crops.
    Lopes MS; Araus JL; van Heerden PD; Foyer CH
    J Exp Bot; 2011 May; 62(9):3135-53. PubMed ID: 21511912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat Stress Effect on the Grain Yield of Three Drought-Tolerant Maize Varieties under Varying Growth Conditions.
    Chukwudi UP; Kutu FR; Mavengahama S
    Plants (Basel); 2021 Jul; 10(8):. PubMed ID: 34451577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Future warming increases probability of globally synchronized maize production shocks.
    Tigchelaar M; Battisti DS; Naylor RL; Ray DK
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):6644-6649. PubMed ID: 29891651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QTLian breeding for climate resilience in cereals: progress and prospects.
    Choudhary M; Wani SH; Kumar P; Bagaria PK; Rakshit S; Roorkiwal M; Varshney RK
    Funct Integr Genomics; 2019 Sep; 19(5):685-701. PubMed ID: 31093800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal Stresses in Maize: Effects and Management Strategies.
    Waqas MA; Wang X; Zafar SA; Noor MA; Hussain HA; Azher Nawaz M; Farooq M
    Plants (Basel); 2021 Feb; 10(2):. PubMed ID: 33557079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO
    Jin Z; Zhuang Q; Wang J; Archontoulis SV; Zobel Z; Kotamarthi VR
    Glob Chang Biol; 2017 Jul; 23(7):2687-2704. PubMed ID: 28063186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change.
    Chen X; Chen F; Chen Y; Gao Q; Yang X; Yuan L; Zhang F; Mi G
    Glob Chang Biol; 2013 Mar; 19(3):923-36. PubMed ID: 23504848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolite Profiles of Maize Leaves in Drought, Heat, and Combined Stress Field Trials Reveal the Relationship between Metabolism and Grain Yield.
    Obata T; Witt S; Lisec J; Palacios-Rojas N; Florez-Sarasa I; Yousfi S; Araus JL; Cairns JE; Fernie AR
    Plant Physiol; 2015 Dec; 169(4):2665-83. PubMed ID: 26424159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Omics" of maize stress response for sustainable food production: opportunities and challenges.
    Gong F; Yang L; Tai F; Hu X; Wang W
    OMICS; 2014 Dec; 18(12):714-32. PubMed ID: 25401749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yield gains and associated changes in an early yellow bi-parental maize population following genomic selection for Striga resistance and drought tolerance.
    Badu-Apraku B; Talabi AO; Fakorede MAB; Fasanmade Y; Gedil M; Magorokosho C; Asiedu R
    BMC Plant Biol; 2019 Apr; 19(1):129. PubMed ID: 30953477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of metabolomic quantitative trait locus mapping and osmotic adjustment traits for the improvement of crop yields under environmental stresses.
    Abdelrahman M; Burritt DJ; Tran LP
    Semin Cell Dev Biol; 2018 Nov; 83():86-94. PubMed ID: 28668354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drought tolerance and proteomics studies of transgenic wheat containing the maize C
    Qin N; Xu W; Hu L; Li Y; Wang H; Qi X; Fang Y; Hua X
    Protoplasma; 2016 Nov; 253(6):1503-1512. PubMed ID: 26560113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ensemble yield simulations: Using heat-tolerant and later-maturing varieties to adapt to climate warming.
    Zhang Y; Zhao Y
    PLoS One; 2017; 12(5):e0176766. PubMed ID: 28459880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A large and deep root system underlies high nitrogen-use efficiency in maize production.
    Yu P; Li X; White PJ; Li C
    PLoS One; 2015; 10(5):e0126293. PubMed ID: 25978356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can Bangladesh produce enough cereals to meet future demand?
    Timsina J; Wolf J; Guilpart N; van Bussel LGJ; Grassini P; van Wart J; Hossain A; Rashid H; Islam S; van Ittersum MK
    Agric Syst; 2018 Jun; 163():36-44. PubMed ID: 29861535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.