BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

513 related articles for article (PubMed ID: 26501285)

  • 41. Fluorescent biosensors: design and application to motor proteins.
    Kunzelmann S; Solscheid C; Webb MR
    Exp Suppl; 2014; 105():25-47. PubMed ID: 25095989
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Single-color, ratiometric biosensors for detecting signaling activities in live cells.
    Ross BL; Tenner B; Markwardt ML; Zviman A; Shi G; Kerr JP; Snell NE; McFarland JJ; Mauban JR; Ward CW; Rizzo MA; Zhang J
    Elife; 2018 Jul; 7():. PubMed ID: 29968564
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Expanding the chemistry of fluorescent protein biosensors through genetic incorporation of unnatural amino acids.
    Niu W; Guo J
    Mol Biosyst; 2013 Dec; 9(12):2961-70. PubMed ID: 24080788
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In Vivo Quantification of Intramolecular FRET Using RacFRET Biosensors.
    Bosch M; Kardash E
    Methods Mol Biol; 2019; 2040():275-297. PubMed ID: 31432484
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cellular Application of Genetically Encoded Sensors and Impeders of AMPK.
    Miyamoto T; Rho E; Kim A; Inoue T
    Methods Mol Biol; 2018; 1732():255-272. PubMed ID: 29480481
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative time domain analysis of lifetime-based Förster resonant energy transfer measurements with fluorescent proteins: Static random isotropic fluorophore orientation distributions.
    Alexandrov Y; Nikolic DS; Dunsby C; French PMW
    J Biophotonics; 2018 Jul; 11(7):e201700366. PubMed ID: 29582566
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of Genetically Encoded FRET Biosensors for Rho-Family GTPases.
    Donnelly SK; Miskolci V; Garrastegui AM; Cox D; Hodgson L
    Methods Mol Biol; 2018; 1821():87-106. PubMed ID: 30062407
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Macromolecular Crowding Measurements with Genetically Encoded Probes Based on Förster Resonance Energy Transfer in Living Cells.
    Mouton SN; Veenhoff LM; Boersma AJ
    Methods Mol Biol; 2020; 2175():169-180. PubMed ID: 32681490
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative Imaging of Genetically Encoded Fluorescence Lifetime Biosensors.
    Vu CQ; Arai S
    Biosensors (Basel); 2023 Oct; 13(10):. PubMed ID: 37887132
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A genetically encoded Förster resonance energy transfer biosensor for two-photon excitation microscopy.
    Kumagai Y; Kamioka Y; Yagi S; Matsuda M; Kiyokawa E
    Anal Biochem; 2011 Jun; 413(2):192-9. PubMed ID: 21352796
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging.
    Carlson HJ; Campbell RE
    Curr Opin Biotechnol; 2009 Feb; 20(1):19-27. PubMed ID: 19223167
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Genetically encoded FRET-pair on the basis of terbium-binding peptide and red fluorescent protein].
    Arslanbaeva LR; Zherdeva VV; Ivashina TV; Vinokurov LM; Rusanov AL; Savitskiĭ AP
    Prikl Biokhim Mikrobiol; 2010; 46(2):166-71. PubMed ID: 20391759
    [TBL] [Abstract][Full Text] [Related]  

  • 53. FRET in a Synthetic Flavin- and Bilin-binding Protein.
    Simon J; Losi A; Zhao KH; Gärtner W
    Photochem Photobiol; 2017 Jul; 93(4):1057-1062. PubMed ID: 28055118
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Properties and use of genetically encoded FRET sensors for cytosolic and organellar Ca2+ measurements.
    Park JG; Palmer AE
    Cold Spring Harb Protoc; 2015 Jan; 2015(1):pdb.top066043. PubMed ID: 25561625
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A rationally enhanced red fluorescent protein expands the utility of FRET biosensors.
    Mo GCH; Posner C; Rodriguez EA; Sun T; Zhang J
    Nat Commun; 2020 Apr; 11(1):1848. PubMed ID: 32296061
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fluorescent Biosensors for Multiplexed Imaging of Phosphoinositide Dynamics.
    Hertel F; Li S; Chen M; Pott L; Mehta S; Zhang J
    ACS Chem Biol; 2020 Jan; 15(1):33-38. PubMed ID: 31855412
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Live-Cell Imaging of Physiologically Relevant Metal Ions Using Genetically Encoded FRET-Based Probes.
    Bischof H; Burgstaller S; Waldeck-Weiermair M; Rauter T; Schinagl M; Ramadani-Muja J; Graier WF; Malli R
    Cells; 2019 May; 8(5):. PubMed ID: 31121936
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2.
    Mastop M; Bindels DS; Shaner NC; Postma M; Gadella TWJ; Goedhart J
    Sci Rep; 2017 Sep; 7(1):11999. PubMed ID: 28931898
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SH2 Domain-Based FRET Biosensor for Measuring BCR-ABL Activity in Living CML Cells.
    Fujioka M; Asano Y; Nakada S; Ohba Y
    Methods Mol Biol; 2017; 1555():513-534. PubMed ID: 28092053
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spectral Unmixing Plate Reader: High-Throughput, High-Precision FRET Assays in Living Cells.
    Schaaf TM; Peterson KC; Grant BD; Thomas DD; Gillispie GD
    SLAS Discov; 2017 Mar; 22(3):250-261. PubMed ID: 27879398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.