BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

513 related articles for article (PubMed ID: 26501285)

  • 61. Förster resonance energy transfer biosensors for fluorescence and time-gated luminescence analysis of rac1 activity.
    Pham H; Hoseini Soflaee M; Karginov AV; Miller LW
    Sci Rep; 2022 Mar; 12(1):5291. PubMed ID: 35351946
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Enhanced dynamic range in a genetically encoded Ca2+ sensor.
    Liu S; He J; Jin H; Yang F; Lu J; Yang J
    Biochem Biophys Res Commun; 2011 Aug; 412(1):155-9. PubMed ID: 21806972
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Single-Molecule Studies on a FRET Biosensor: Lessons from a Comparison of Fluorescent Protein Equipped versus Dye-Labeled Species.
    Höfig H; Cerminara M; Ritter I; Schöne A; Pohl M; Steffen V; Walter J; Vergara Dal Pont I; Katranidis A; Fitter J
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30486450
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example.
    van der Krogt GN; Ogink J; Ponsioen B; Jalink K
    PLoS One; 2008 Apr; 3(4):e1916. PubMed ID: 18382687
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The design and application of genetically encodable biosensors based on fluorescent proteins.
    Newman RH; Zhang J
    Methods Mol Biol; 2014; 1071():1-16. PubMed ID: 24052376
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Designing and construction of genetically encoded FRET-based nanosensor for qualitative analysis of digoxin.
    Ambrin G; Kausar H; Ahmad A
    J Biotechnol; 2020 Nov; 323():322-330. PubMed ID: 32937180
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fluorescent proteins and genetically encoded biosensors.
    Wang M; Da Y; Tian Y
    Chem Soc Rev; 2023 Feb; 52(4):1189-1214. PubMed ID: 36722390
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A Unique Genetically Encoded FRET Pair in Mammalian Cells.
    Mitchell AL; Addy PS; Chin MA; Chatterjee A
    Chembiochem; 2017 Mar; 18(6):511-514. PubMed ID: 28093840
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Imaging approach for monitoring cellular metabolites and ions using genetically encoded biosensors.
    Okumoto S
    Curr Opin Biotechnol; 2010 Feb; 21(1):45-54. PubMed ID: 20167470
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Quantitative analysis of recombination between YFP and CFP genes of FRET biosensors introduced by lentiviral or retroviral gene transfer.
    Komatsubara AT; Matsuda M; Aoki K
    Sci Rep; 2015 Aug; 5():13283. PubMed ID: 26290434
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Genetic biosensors for imaging nitric oxide in single cells.
    Eroglu E; Charoensin S; Bischof H; Ramadani J; Gottschalk B; Depaoli MR; Waldeck-Weiermair M; Graier WF; Malli R
    Free Radic Biol Med; 2018 Nov; 128():50-58. PubMed ID: 29398285
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fluorescent protein-based FRET sensor for intracellular monitoring of redox status in bacteria at single cell level.
    Abraham BG; Santala V; Tkachenko NV; Karp M
    Anal Bioanal Chem; 2014 Nov; 406(28):7195-204. PubMed ID: 25224640
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Genetically Encoded Fluorescent Sensor for Poly-ADP-Ribose.
    Serebrovskaya EO; Podvalnaya NM; Dudenkova VV; Efremova AS; Gurskaya NG; Gorbachev DA; Luzhin AV; Kantidze OL; Zagaynova EV; Shram SI; Lukyanov KA
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32679873
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Optimization of ERK activity biosensors for both ratiometric and lifetime FRET measurements.
    Vandame P; Spriet C; Riquet F; Trinel D; Cailliau-Maggio K; Bodart JF
    Sensors (Basel); 2014 Jan; 14(1):1140-54. PubMed ID: 24434874
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Role of green fluorescent proteins and their variants in development of FRET-based sensors.
    Soleja N; Manzoor O; Khan I; Ahmad A; Mohsin M
    J Biosci; 2018 Sep; 43(4):763-784. PubMed ID: 30207321
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Fluorescence lifetime readouts of Troponin-C-based calcium FRET sensors: a quantitative comparison of CFP and mTFP1 as donor fluorophores.
    Laine R; Stuckey DW; Manning H; Warren SC; Kennedy G; Carling D; Dunsby C; Sardini A; French PM
    PLoS One; 2012; 7(11):e49200. PubMed ID: 23152874
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation.
    Oldach L; Zhang J
    Chem Biol; 2014 Feb; 21(2):186-97. PubMed ID: 24485761
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Hyperspectral imaging for simultaneous measurements of two FRET biosensors in pancreatic β-cells.
    Elliott AD; Bedard N; Ustione A; Baird MA; Davidson MW; Tkaczyk T; Piston DW
    PLoS One; 2017; 12(12):e0188789. PubMed ID: 29211763
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biosensing with Förster Resonance Energy Transfer Coupling between Fluorophores and Nanocarbon Allotropes.
    Ding S; Cargill AA; Das SR; Medintz IL; Claussen JC
    Sensors (Basel); 2015 Jun; 15(6):14766-87. PubMed ID: 26110411
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Development of a molecularly evolved, highly sensitive CaMKII FRET sensor with improved expression pattern.
    Shibata AC; Maebashi HK; Nakahata Y; Nabekura J; Murakoshi H
    PLoS One; 2015; 10(3):e0121109. PubMed ID: 25799407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.