These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 26501285)

  • 81. Development of a molecularly evolved, highly sensitive CaMKII FRET sensor with improved expression pattern.
    Shibata AC; Maebashi HK; Nakahata Y; Nabekura J; Murakoshi H
    PLoS One; 2015; 10(3):e0121109. PubMed ID: 25799407
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Quantitative two-photon imaging of fluorescent biosensors.
    Yellen G; Mongeon R
    Curr Opin Chem Biol; 2015 Aug; 27():24-30. PubMed ID: 26079046
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A general method for the development of multicolor biosensors with large dynamic ranges.
    Hellweg L; Edenhofer A; Barck L; Huppertz MC; Frei MS; Tarnawski M; Bergner A; Koch B; Johnsson K; Hiblot J
    Nat Chem Biol; 2023 Sep; 19(9):1147-1157. PubMed ID: 37291200
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Fluorescence resonance energy transfer imaging of cell signaling from in vitro to in vivo: basis of biosensor construction, live imaging, and image processing.
    Aoki K; Kamioka Y; Matsuda M
    Dev Growth Differ; 2013 May; 55(4):515-22. PubMed ID: 23387795
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Multiplex Imaging of Rho GTPase Activities in Living Cells.
    Bhalla RM; Hülsemann M; Verkhusha PV; Walker MG; Shcherbakova DM; Hodgson L
    Methods Mol Biol; 2021; 2350():43-68. PubMed ID: 34331278
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Monitoring of dual bio-molecular events using FRET biosensors based on mTagBFP/sfGFP and mVenus/mKOκ fluorescent protein pairs.
    Su T; Pan S; Luo Q; Zhang Z
    Biosens Bioelectron; 2013 Aug; 46():97-101. PubMed ID: 23517824
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Using Genetically Encoded Fluorescent Biosensors for Quantitative In Vivo Imaging.
    Yoshinari A; Moe-Lange J; Kleist TJ; Cartwright HN; Quint DA; Ehrhardt DW; Frommer WB; Nakamura M
    Methods Mol Biol; 2021; 2200():303-322. PubMed ID: 33175384
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A bacteria colony-based screen for optimal linker combinations in genetically encoded biosensors.
    Ibraheem A; Yap H; Ding Y; Campbell RE
    BMC Biotechnol; 2011 Nov; 11():105. PubMed ID: 22074568
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Maximizing the quantitative accuracy and reproducibility of Förster resonance energy transfer measurement for screening by high throughput widefield microscopy.
    Schaufele F
    Methods; 2014 Mar; 66(2):188-99. PubMed ID: 23927839
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Fluorescent-protein-based probes: general principles and practices.
    Ai HW
    Anal Bioanal Chem; 2015 Jan; 407(1):9-15. PubMed ID: 25326886
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Engineering Dark Chromoprotein Reporters for Photoacoustic Microscopy and FRET Imaging.
    Li Y; Forbrich A; Wu J; Shao P; Campbell RE; Zemp R
    Sci Rep; 2016 Mar; 6():22129. PubMed ID: 26926390
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Biosensors of DsRed as FRET partner with CFP or GFP for quantitatively imaging induced activation of Rac, Cdc42 in living cells.
    Liu R; Ren D; Liu Y; Deng Y; Sun B; Zhang Q; Guo X
    Mol Imaging Biol; 2011 Jun; 13(3):424-431. PubMed ID: 20683671
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer.
    Miyawaki A
    Annu Rev Biochem; 2011; 80():357-73. PubMed ID: 21529159
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Design and Prototyping of Genetically Encoded Arsenic Biosensors Based on Transcriptional Regulator AfArsR.
    Khan SS; Shen Y; Fatmi MQ; Campbell RE; Bokhari H
    Biomolecules; 2021 Aug; 11(9):. PubMed ID: 34572489
    [TBL] [Abstract][Full Text] [Related]  

  • 95. [Applications of FRET technology in the study of mechanotransduction].
    Liu B; Qin K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Dec; 30(6):1362-7. PubMed ID: 24645627
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Live imaging of transgenic mice expressing FRET biosensors.
    Kamioka Y; Sumiyama K; Mizuno R; Matsuda M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():125-8. PubMed ID: 24109640
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Troponin C-based biosensors: a new family of genetically encoded indicators for in vivo calcium imaging in the nervous system.
    Garaschuk O; Griesbeck O; Konnerth A
    Cell Calcium; 2007; 42(4-5):351-61. PubMed ID: 17451806
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Crowding Effects on Energy-Transfer Efficiencies of Hetero-FRET Probes As Measured Using Time-Resolved Fluorescence Anisotropy.
    Leopold HJ; Leighton R; Schwarz J; Boersma AJ; Sheets ED; Heikal AA
    J Phys Chem B; 2019 Jan; 123(2):379-393. PubMed ID: 30571116
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Analysing the action of bacterial toxins in living cells with fluorescence resonance energy transfer (FRET).
    Majoul I
    Int J Med Microbiol; 2004 Apr; 293(7-8):495-503. PubMed ID: 15149024
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Combining protein complementation assays with resonance energy transfer to detect multipartner protein complexes in living cells.
    Rebois RV; Robitaille M; Pétrin D; Zylbergold P; Trieu P; Hébert TE
    Methods; 2008 Jul; 45(3):214-8. PubMed ID: 18586102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.