BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 26501457)

  • 1. Impact of point spread function modelling and time of flight on FDG uptake measurements in lung lesions using alternative filtering strategies.
    Armstrong IS; Kelly MD; Williams HA; Matthews JC
    EJNMMI Phys; 2014 Dec; 1(1):99. PubMed ID: 26501457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of time of flight and point spread function on quantitative parameters of lung lesions in
    Huang K; Feng Y; Liang W; Li L
    BMC Med Imaging; 2021 Nov; 21(1):169. PubMed ID: 34773998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The value of Bayesian penalized likelihood reconstruction for improving lesion conspicuity of malignant lung tumors on
    Kurita Y; Ichikawa Y; Nakanishi T; Tomita Y; Hasegawa D; Murashima S; Hirano T; Sakuma H
    Ann Nucl Med; 2020 Apr; 34(4):272-279. PubMed ID: 32060780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The association of tumor-to-background ratios and SUVmax deviations related to point spread function and time-of-flight F18-FDG-PET/CT reconstruction in colorectal liver metastases.
    Rogasch JM; Steffen IG; Hofheinz F; Großer OS; Furth C; Mohnike K; Hass P; Walke M; Apostolova I; Amthauer H
    EJNMMI Res; 2015; 5():31. PubMed ID: 25992306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical evaluation of whole-body oncologic PET with time-of-flight and point-spread function for the hybrid PET/MR system.
    Shang K; Cui B; Ma J; Shuai D; Liang Z; Jansen F; Zhou Y; Lu J; Zhao G
    Eur J Radiol; 2017 Aug; 93():70-75. PubMed ID: 28668434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of the physiological background correction method for the suppression of the spill-in effect near highly radioactive regions in positron emission tomography.
    Akerele MI; Wadhwa P; Silva-Rodriguez J; Hallett W; Tsoumpas C
    EJNMMI Phys; 2018 Dec; 5(1):34. PubMed ID: 30519974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harmonizing FDG PET quantification while maintaining optimal lesion detection: prospective multicentre validation in 517 oncology patients.
    Quak E; Le Roux PY; Hofman MS; Robin P; Bourhis D; Callahan J; Binns D; Desmonts C; Salaun PY; Hicks RJ; Aide N
    Eur J Nucl Med Mol Imaging; 2015 Dec; 42(13):2072-82. PubMed ID: 26219870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of different signal-to-background ratios on spatial resolution and F18-FDG-PET quantification using point spread function and time-of-flight reconstruction.
    Rogasch JM; Hofheinz F; Lougovski A; Furth C; Ruf J; Großer OS; Mohnike K; Hass P; Walke M; Amthauer H; Steffen IG
    EJNMMI Phys; 2014 Dec; 1(1):12. PubMed ID: 26501454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement in PET/CT image quality with a combination of point-spread function and time-of-flight in relation to reconstruction parameters.
    Akamatsu G; Ishikawa K; Mitsumoto K; Taniguchi T; Ohya N; Baba S; Abe K; Sasaki M
    J Nucl Med; 2012 Nov; 53(11):1716-22. PubMed ID: 22952340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influences of point-spread function and time-of-flight reconstructions on standardized uptake value of lymph node metastases in FDG-PET.
    Akamatsu G; Mitsumoto K; Taniguchi T; Tsutsui Y; Baba S; Sasaki M
    Eur J Radiol; 2014 Jan; 83(1):226-30. PubMed ID: 24144448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Point-Spread Function Modeling on PET Image Quality in Integrated PET/MR Hybrid Imaging.
    Aklan B; Oehmigen M; Beiderwellen K; Ruhlmann M; Paulus DH; Jakoby BW; Ritt P; Quick HH
    J Nucl Med; 2016 Jan; 57(1):78-84. PubMed ID: 26471697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploration of the total-body PET/CT reconstruction protocol with ultra-low
    Sui X; Tan H; Yu H; Xiao J; Qi C; Cao Y; Chen S; Zhang Y; Hu P; Shi H
    EJNMMI Phys; 2022 Mar; 9(1):17. PubMed ID: 35239037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor volume-adapted SUV
    Mosleh-Shirazi MA; Nasiri-Feshani Z; Ghafarian P; Alavi M; Haddadi G; Ketabi A
    Jpn J Radiol; 2021 Aug; 39(8):811-823. PubMed ID: 33880686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of a dedicated protocol using a small-voxel PSF reconstruction for head-and-neck
    Ciappuccini R; Desmonts C; Licaj I; Blanc-Fournier C; Bardet S; Aide N
    EJNMMI Res; 2018 Dec; 8(1):104. PubMed ID: 30511173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes of [
    Liu Y; Gao MJ; Zhou J; Du F; Chen L; Huang ZK; Hu JB; Lou C
    BMC Med Imaging; 2021 Sep; 21(1):133. PubMed ID: 34530768
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Lasnon C; Majdoub M; Lavigne B; Do P; Madelaine J; Visvikis D; Hatt M; Aide N
    Eur J Nucl Med Mol Imaging; 2016 Dec; 43(13):2324-2335. PubMed ID: 27325312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using EQ·PET to reduce reconstruction-dependent variations in [
    Vanhoutte M; Semah F; Lopes R; Jaillard A; Petyt G; Aziz AL; Lahousse H; Declerck J; Pasquier F; Spottiswoode B; Fahmi R
    Phys Med Biol; 2019 Aug; 64(17):175002. PubMed ID: 31344691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Time-of-Flight and Point-Spread-Function for Respiratory Artifact Reduction in PET/CT Imaging: Focus on Standardized Uptake Value.
    Sharifpour R; Ghafarian P; Bakhshayesh-Karam M; Jamaati H; Ay MR
    Tanaffos; 2017; 16(2):127-135. PubMed ID: 29308077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain PET imaging optimization with time of flight and point spread function modelling.
    Prieto E; Martí-Climent JM; Morán V; Sancho L; Barbés B; Arbizu J; Richter JA
    Phys Med; 2015 Dec; 31(8):948-955. PubMed ID: 26249138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SUV Harmonization Between Different Hybrid PET/CT Systems.
    Rubello D; Colletti PM
    Clin Nucl Med; 2018 Nov; 43(11):811-814. PubMed ID: 30199381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.