BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 26501477)

  • 1. NETBAGs: a network-based clustering approach with gene signatures for cancer subtyping analysis.
    Wu L; Liu Z; Xu J; Chen M; Fang H; Tong W; Xiao W
    Biomark Med; 2015; 9(11):1053-65. PubMed ID: 26501477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-expression modules identified from published immune signatures reveal five distinct immune subtypes in breast cancer.
    Amara D; Wolf DM; van 't Veer L; Esserman L; Campbell M; Yau C
    Breast Cancer Res Treat; 2017 Jan; 161(1):41-50. PubMed ID: 27815749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.
    Khunlertgit N; Yoon BJ
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):351. PubMed ID: 27766944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring novel targets of basal-like breast carcinoma by comparative gene profiling and mechanism analysis.
    Wu YM; Hu W; Wang Y; Wang N; Gao L; Chen ZZ; Zheng WQ
    Breast Cancer Res Treat; 2013 Aug; 141(1):23-32. PubMed ID: 23933801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of breast tumors confirms the mRNA intrinsic molecular subtypes using different classifiers: a large-scale analysis of fresh frozen tissue samples.
    Waldemarson S; Kurbasic E; Krogh M; Cifani P; Berggård T; Borg Å; James P
    Breast Cancer Res; 2016 Jun; 18(1):69. PubMed ID: 27357824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural networks and Fuzzy clustering methods for assessing the efficacy of microarray based intrinsic gene signatures in breast cancer classification and the character and relations of identified subtypes.
    Samarasinghe S; Chaiboonchoe A
    Methods Mol Biol; 2015; 1260():285-317. PubMed ID: 25502389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subtyping of breast cancer using reverse phase protein arrays.
    Sonntag J; Schlüter K; Bernhardt S; Korf U
    Expert Rev Proteomics; 2014 Dec; 11(6):757-70. PubMed ID: 25400094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression genomics in breast cancer research: microarrays at the crossroads of biology and medicine.
    Miller LD; Liu ET
    Breast Cancer Res; 2007; 9(2):206. PubMed ID: 17397520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of breast cancer using pathway profiles.
    Tian F; Wang Y; Seiler M; Hu Z
    BMC Med Genomics; 2014 Jul; 7():45. PubMed ID: 25041817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical implications of the intrinsic molecular subtypes of breast cancer.
    Prat A; Pineda E; Adamo B; Galván P; Fernández A; Gaba L; Díez M; Viladot M; Arance A; Muñoz M
    Breast; 2015 Nov; 24 Suppl 2():S26-35. PubMed ID: 26253814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management.
    Maruschke M; Reuter D; Koczan D; Hakenberg OW; Thiesen HJ
    BJU Int; 2011 Jul; 108(2 Pt 2):E29-35. PubMed ID: 21435154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Breast pathology 2014].
    Kreipe HH
    Pathologe; 2014 Feb; 35(1):5-6. PubMed ID: 24496989
    [No Abstract]   [Full Text] [Related]  

  • 13. An Integrative Approach for Identifying Network Biomarkers of Breast Cancer Subtypes Using Genomic, Interactomic, and Transcriptomic Data.
    Firoozbakht F; Rezaeian I; D'agnillo M; Porter L; Rueda L; Ngom A
    J Comput Biol; 2017 Aug; 24(8):756-766. PubMed ID: 28650678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stratification of Breast Cancer by Integrating Gene Expression Data and Clinical Variables.
    He Z; Zhang J; Yuan X; Xi J; Liu Z; Zhang Y
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30754661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network based stratification of major cancers by integrating somatic mutation and gene expression data.
    He Z; Zhang J; Yuan X; Liu Z; Liu B; Tuo S; Liu Y
    PLoS One; 2017; 12(5):e0177662. PubMed ID: 28520777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular portraits revealing the heterogeneity of breast tumor subtypes defined using immunohistochemistry markers.
    Dai X; Li Y; Bai Z; Tang XQ
    Sci Rep; 2015 Sep; 5():14499. PubMed ID: 26404658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational method for clinically relevant cancer stratification and driver mutation module discovery using personal genomics profiles.
    Wang L; Li F; Sheng J; Wong ST
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S6. PubMed ID: 26099165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges in projecting clustering results across gene expression-profiling datasets.
    Lusa L; McShane LM; Reid JF; De Cecco L; Ambrogi F; Biganzoli E; Gariboldi M; Pierotti MA
    J Natl Cancer Inst; 2007 Nov; 99(22):1715-23. PubMed ID: 18000217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FGMD: A novel approach for functional gene module detection in cancer.
    Jin D; Lee H
    PLoS One; 2017; 12(12):e0188900. PubMed ID: 29244808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of molecular subtyping with BluePrint, MammaPrint, and TargetPrint to local clinical subtyping in breast cancer patients.
    Nguyen B; Cusumano PG; Deck K; Kerlin D; Garcia AA; Barone JL; Rivera E; Yao K; de Snoo FA; van den Akker J; Stork-Sloots L; Generali D
    Ann Surg Oncol; 2012 Oct; 19(10):3257-63. PubMed ID: 22965266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.