These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 26501775)
1. A Modified BFGS Formula Using a Trust Region Model for Nonsmooth Convex Minimizations. Cui Z; Yuan G; Sheng Z; Liu W; Wang X; Duan X PLoS One; 2015; 10(10):e0140606. PubMed ID: 26501775 [TBL] [Abstract][Full Text] [Related]
2. An active-set algorithm for solving large-scale nonsmooth optimization models with box constraints. Li Y; Yuan G; Sheng Z PLoS One; 2018; 13(1):e0189290. PubMed ID: 29293517 [TBL] [Abstract][Full Text] [Related]
3. A Limited-Memory BFGS Algorithm Based on a Trust-Region Quadratic Model for Large-Scale Nonlinear Equations. Li Y; Yuan G; Wei Z PLoS One; 2015; 10(5):e0120993. PubMed ID: 25950725 [TBL] [Abstract][Full Text] [Related]
4. Neural network for constrained nonsmooth optimization using Tikhonov regularization. Qin S; Fan D; Wu G; Zhao L Neural Netw; 2015 Mar; 63():272-81. PubMed ID: 25590563 [TBL] [Abstract][Full Text] [Related]
5. LM-CMA: An Alternative to L-BFGS for Large-Scale Black Box Optimization. Loshchilov I Evol Comput; 2017; 25(1):143-171. PubMed ID: 26426070 [TBL] [Abstract][Full Text] [Related]
6. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models. Yuan G; Duan X; Liu W; Wang X; Cui Z; Sheng Z PLoS One; 2015; 10(10):e0140071. PubMed ID: 26502409 [TBL] [Abstract][Full Text] [Related]
7. An accelerated proximal gradient algorithm for singly linearly constrained quadratic programs with box constraints. Han C; Li M; Zhao T; Guo T ScientificWorldJournal; 2013; 2013():246596. PubMed ID: 24223028 [TBL] [Abstract][Full Text] [Related]
8. A modified nonmonotone BFGS algorithm for unconstrained optimization. Li X; Wang B; Hu W J Inequal Appl; 2017; 2017(1):183. PubMed ID: 28845092 [TBL] [Abstract][Full Text] [Related]
9. A tensor trust-region model for nonlinear system. Wang S; Liu S J Inequal Appl; 2018; 2018(1):343. PubMed ID: 30839853 [TBL] [Abstract][Full Text] [Related]
10. Incremental and Parallel Machine Learning Algorithms With Automated Learning Rate Adjustments. Hishinuma K; Iiduka H Front Robot AI; 2019; 6():77. PubMed ID: 33501092 [TBL] [Abstract][Full Text] [Related]
11. A fast continuous time approach for non-smooth convex optimization using Tikhonov regularization technique. Karapetyants MA Comput Optim Appl; 2024; 87(2):531-569. PubMed ID: 38357400 [TBL] [Abstract][Full Text] [Related]
12. Variable Smoothing for Convex Optimization Problems Using Stochastic Gradients. Boţ RI; Böhm A J Sci Comput; 2020; 85(2):33. PubMed ID: 33122873 [TBL] [Abstract][Full Text] [Related]
13. Neural network for nonsmooth pseudoconvex optimization with general convex constraints. Bian W; Ma L; Qin S; Xue X Neural Netw; 2018 May; 101():1-14. PubMed ID: 29471133 [TBL] [Abstract][Full Text] [Related]
14. Subgradient-based neural networks for nonsmooth nonconvex optimization problems. Bian W; Xue X IEEE Trans Neural Netw; 2009 Jun; 20(6):1024-38. PubMed ID: 19457749 [TBL] [Abstract][Full Text] [Related]
15. Second Order Dynamics Featuring Tikhonov Regularization and Time Scaling. Csetnek ER; Karapetyants MA J Optim Theory Appl; 2024; 202(3):1385-1420. PubMed ID: 39246431 [TBL] [Abstract][Full Text] [Related]
16. A fast continuous time approach with time scaling for nonsmooth convex optimization. Boţ RI; Karapetyants MA Adv Contin Discret Model; 2022; 2022(1):73. PubMed ID: 36540365 [TBL] [Abstract][Full Text] [Related]
17. Convergence of Proximal Iteratively Reweighted Nuclear Norm Algorithm for Image Processing. Tao Sun ; Hao Jiang ; Lizhi Cheng IEEE Trans Image Process; 2017 Dec; 26(12):5632-5644. PubMed ID: 28858798 [TBL] [Abstract][Full Text] [Related]
18. A convergent hybrid decomposition algorithm model for SVM training. Lucidi S; Palagi L; Risi A; Sciandrone M IEEE Trans Neural Netw; 2009 Jun; 20(6):1055-60. PubMed ID: 19435679 [TBL] [Abstract][Full Text] [Related]
19. Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction. Nikolova M; Ng MK; Tam CP IEEE Trans Image Process; 2010 Dec; 19(12):3073-88. PubMed ID: 20542766 [TBL] [Abstract][Full Text] [Related]
20. A Generalized Hopfield Network for Nonsmooth Constrained Convex Optimization: Lie Derivative Approach. Li C; Yu X; Huang T; Chen G; He X IEEE Trans Neural Netw Learn Syst; 2016 Feb; 27(2):308-21. PubMed ID: 26595931 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]