These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 26501954)

  • 1. In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity.
    Lynn GM; Laga R; Darrah PA; Ishizuka AS; Balaci AJ; Dulcey AE; Pechar M; Pola R; Gerner MY; Yamamoto A; Buechler CR; Quinn KM; Smelkinson MG; Vanek O; Cawood R; Hills T; Vasalatiy O; Kastenmüller K; Francica JR; Stutts L; Tom JK; Ryu KA; Esser-Kahn AP; Etrych T; Fisher KD; Seymour LW; Seder RA
    Nat Biotechnol; 2015 Nov; 33(11):1201-10. PubMed ID: 26501954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Polymer-TLR-7/8 Agonist (Adjuvant) Morphology on the Potency and Mechanism of CD8 T Cell Induction.
    Lynn GM; Chytil P; Francica JR; Lagová A; Kueberuwa G; Ishizuka AS; Zaidi N; Ramirez-Valdez RA; Blobel NJ; Baharom F; Leal J; Wang AQ; Gerner MY; Etrych T; Ulbrich K; Seymour LW; Seder RA; Laga R
    Biomacromolecules; 2019 Feb; 20(2):854-870. PubMed ID: 30608149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small cationic DDA:TDB liposomes as protein vaccine adjuvants obviate the need for TLR agonists in inducing cellular and humoral responses.
    Milicic A; Kaur R; Reyes-Sandoval A; Tang CK; Honeycutt J; Perrie Y; Hill AV
    PLoS One; 2012; 7(3):e34255. PubMed ID: 22470545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide-TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens.
    Lynn GM; Sedlik C; Baharom F; Zhu Y; Ramirez-Valdez RA; Coble VL; Tobin K; Nichols SR; Itzkowitz Y; Zaidi N; Gammon JM; Blobel NJ; Denizeau J; de la Rochere P; Francica BJ; Decker B; Maciejewski M; Cheung J; Yamane H; Smelkinson MG; Francica JR; Laga R; Bernstock JD; Seymour LW; Drake CG; Jewell CM; Lantz O; Piaggio E; Ishizuka AS; Seder RA
    Nat Biotechnol; 2020 Mar; 38(3):320-332. PubMed ID: 31932728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release.
    Ilyinskii PO; Roy CJ; O'Neil CP; Browning EA; Pittet LA; Altreuter DH; Alexis F; Tonti E; Shi J; Basto PA; Iannacone M; Radovic-Moreno AF; Langer RS; Farokhzad OC; von Andrian UH; Johnston LP; Kishimoto TK
    Vaccine; 2014 May; 32(24):2882-95. PubMed ID: 24593999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formulation of aluminum hydroxide adjuvant with TLR agonists poly(I:C) and CpG enhances the magnitude and avidity of the humoral immune response.
    Lu F; Mosley YC; Carmichael B; Brown DD; HogenEsch H
    Vaccine; 2019 Mar; 37(14):1945-1953. PubMed ID: 30803844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toll-like receptor agonists shape the immune responses to a mannose receptor-targeted cancer vaccine.
    He LZ; Weidlick J; Sisson C; Marsh HC; Keler T
    Cell Mol Immunol; 2015 Nov; 12(6):719-28. PubMed ID: 25345808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic Toll-like receptor agonists for the development of powerful malaria vaccines: a patent review.
    Kaur A; Kannan D; Mehta SK; Singh S; Salunke DB
    Expert Opin Ther Pat; 2018 Nov; 28(11):837-847. PubMed ID: 30280939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Strategies to Enhance the Therapeutic Efficacy of Toll-like Receptor Agonist Based Cancer Immunotherapy.
    Lee SN; Jin SM; Shin HS; Lim YT
    Acc Chem Res; 2020 Oct; 53(10):2081-2093. PubMed ID: 32966047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antigen epitope-TLR7/8a conjugate as self-assembled carrier-free nanovaccine for personalized immunotherapy.
    Song H; Su Q; Shi W; Huang P; Zhang C; Zhang C; Liu Q; Wang W
    Acta Biomater; 2022 Mar; 141():398-407. PubMed ID: 35007785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial Protein Toll-Like-Receptor Agonists: A Novel Perspective on Vaccine Adjuvants.
    Kumar S; Sunagar R; Gosselin E
    Front Immunol; 2019; 10():1144. PubMed ID: 31191528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinatorial Delivery of Dual and Triple TLR Agonists via Polymeric Pathogen-like Particles Synergistically Enhances Innate and Adaptive Immune Responses.
    Madan-Lala R; Pradhan P; Roy K
    Sci Rep; 2017 May; 7(1):2530. PubMed ID: 28566683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunological Principles Guiding the Rational Design of Particles for Vaccine Delivery.
    Gause KT; Wheatley AK; Cui J; Yan Y; Kent SJ; Caruso F
    ACS Nano; 2017 Jan; 11(1):54-68. PubMed ID: 28075558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of immune factors regulating antitumor immunity using polymeric vaccines with multiple adjuvants.
    Ali OA; Verbeke C; Johnson C; Sands RW; Lewin SA; White D; Doherty E; Dranoff G; Mooney DJ
    Cancer Res; 2014 Mar; 74(6):1670-81. PubMed ID: 24480625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adjuvanting a Simian Immunodeficiency Virus Vaccine with Toll-Like Receptor Ligands Encapsulated in Nanoparticles Induces Persistent Antibody Responses and Enhanced Protection in TRIM5α Restrictive Macaques.
    Kasturi SP; Kozlowski PA; Nakaya HI; Burger MC; Russo P; Pham M; Kovalenkov Y; Silveira ELV; Havenar-Daughton C; Burton SL; Kilgore KM; Johnson MJ; Nabi R; Legere T; Sher ZJ; Chen X; Amara RR; Hunter E; Bosinger SE; Spearman P; Crotty S; Villinger F; Derdeyn CA; Wrammert J; Pulendran B
    J Virol; 2017 Feb; 91(4):. PubMed ID: 27928002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Effects of Toll-Like Receptor Signaling on the Activation of Immune Responses in the Upper Respiratory Tract.
    Xu M; Li N; Fan X; Zhou Y; Bi S; Shen A; Wang B
    Microbiol Spectr; 2022 Feb; 10(1):e0114421. PubMed ID: 35196817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of Toll-like receptor agonists on the immunogenicity of MVA-SARS-2-S vaccine after intranasal administration in mice.
    Do KTH; Willenzon S; Ristenpart J; Janssen A; Volz A; Sutter G; Förster R; Bošnjak B
    Front Cell Infect Microbiol; 2023; 13():1259822. PubMed ID: 37854858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Properties of Potential Synthetic Vaccine Adjuvants - TLR Agonists.
    Honegr J; Soukup O; Doležal R; Malinak D; Penhaker M; Prymula R; Kuca K
    Curr Med Chem; 2015; 22(29):3306-25. PubMed ID: 26295466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attenuating regulatory T cell induction by TLR agonists through inhibition of p38 MAPK signaling in dendritic cells enhances their efficacy as vaccine adjuvants and cancer immunotherapeutics.
    Jarnicki AG; Conroy H; Brereton C; Donnelly G; Toomey D; Walsh K; Sweeney C; Leavy O; Fletcher J; Lavelle EC; Dunne P; Mills KH
    J Immunol; 2008 Mar; 180(6):3797-806. PubMed ID: 18322186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioconjugation Approaches to Producing Subunit Vaccines Composed of Protein or Peptide Antigens and Covalently Attached Toll-Like Receptor Ligands.
    Xu Z; Moyle PM
    Bioconjug Chem; 2018 Mar; 29(3):572-586. PubMed ID: 28891637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.