These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26502634)

  • 1. Metallic Nanomaterials for Bone Tissue Engineering.
    Dhivya S; Ajita J; Selvamurugan N
    J Biomed Nanotechnol; 2015 Oct; 11(10):1675-700. PubMed ID: 26502634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaffold/Extracellular matrix hybrid constructs for bone-tissue engineering.
    Thibault RA; Mikos AG; Kasper FK
    Adv Healthc Mater; 2013 Jan; 2(1):13-24. PubMed ID: 23184883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in bionanomaterials for bone tissue engineering.
    Scott TG; Blackburn G; Ashley M; Bayer IS; Ghosh A; Biris AS; Biswas A
    J Nanosci Nanotechnol; 2013 Jan; 13(1):1-22. PubMed ID: 23646693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactive composites for bone tissue engineering.
    Tanner KE
    Proc Inst Mech Eng H; 2010 Dec; 224(12):1359-72. PubMed ID: 21287825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of biocomposite materials for bone tissue regeneration.
    Yunus Basha R; Sampath Kumar TS; Doble M
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():452-63. PubMed ID: 26354284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of titanium dioxide on the morphology, microstructure, and bioactivity of grafted cellulose/hydroxyapatite nanocomposites for a potential application in bone repair.
    Saber-Samandari S; Yekta H; Ahmadi S; Alamara K
    Int J Biol Macromol; 2018 Jan; 106():481-488. PubMed ID: 28797809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation.
    Jones JR; Lin S; Yue S; Lee PD; Hanna JV; Smith ME; Newport RJ
    Proc Inst Mech Eng H; 2010 Dec; 224(12):1373-87. PubMed ID: 21287826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges in engineering large customized bone constructs.
    Forrestal DP; Klein TJ; Woodruff MA
    Biotechnol Bioeng; 2017 Jun; 114(6):1129-1139. PubMed ID: 27858993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactive glass-based scaffolds for bone tissue engineering.
    Will J; Gerhardt LC; Boccaccini AR
    Adv Biochem Eng Biotechnol; 2012; 126():195-226. PubMed ID: 22085919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone tissue engineering.
    Healy KE; Guldberg RE
    J Musculoskelet Neuronal Interact; 2007; 7(4):328-30. PubMed ID: 18094496
    [No Abstract]   [Full Text] [Related]  

  • 12. The performance of bone tissue engineering scaffolds in in vivo animal models: A systematic review.
    de Misquita MR; Bentini R; Goncalves F
    J Biomater Appl; 2016 Nov; 31(5):625-636. PubMed ID: 27334129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic Tissue-Engineered Bone Substitutes for Maxillofacial and Craniofacial Repair: The Potential of Cell Sheet Technologies.
    Kawecki F; Clafshenkel WP; Fortin M; Auger FA; Fradette J
    Adv Healthc Mater; 2018 Mar; 7(6):e1700919. PubMed ID: 29280323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured scaffolds for bone tissue engineering.
    Li X; Wang L; Fan Y; Feng Q; Cui FZ; Watari F
    J Biomed Mater Res A; 2013 Aug; 101(8):2424-35. PubMed ID: 23377988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering.
    Chen G; Dong C; Yang L; Lv Y
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair.
    Tandon B; Blaker JJ; Cartmell SH
    Acta Biomater; 2018 Jun; 73():1-20. PubMed ID: 29673838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of nanomaterials for bone repair and regeneration.
    McMahon RE; Wang L; Skoracki R; Mathur AB
    J Biomed Mater Res B Appl Biomater; 2013 Feb; 101(2):387-97. PubMed ID: 23281143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone tissue engineering: current strategies and techniques--part I: Scaffolds.
    Szpalski C; Wetterau M; Barr J; Warren SM
    Tissue Eng Part B Rev; 2012 Aug; 18(4):246-57. PubMed ID: 22029448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-driven processing techniques for manufacturing fully interconnected porous scaffolds in bone tissue engineering.
    Guarino V; Ambrosio L
    Proc Inst Mech Eng H; 2010 Dec; 224(12):1389-400. PubMed ID: 21287827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel bioactive materials with different mechanical properties.
    Kokubo T; Kim HM; Kawashita M
    Biomaterials; 2003 Jun; 24(13):2161-75. PubMed ID: 12699652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.