These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26502634)

  • 21. Endosteal-like extracellular matrix expression on melt electrospun written scaffolds.
    Muerza-Cascante ML; Shokoohmand A; Khosrotehrani K; Haylock D; Dalton PD; Hutmacher DW; Loessner D
    Acta Biomater; 2017 Apr; 52():145-158. PubMed ID: 28017869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds.
    Bertol LS; Schabbach R; Loureiro Dos Santos LA
    J Mater Sci Mater Med; 2017 Sep; 28(10):168. PubMed ID: 28916883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physico-chemical characterization of functional electrospun scaffolds for bone and cartilage tissue engineering.
    Mouthuy PA; Ye H; Triffitt J; Oommen G; Cui Z
    Proc Inst Mech Eng H; 2010 Dec; 224(12):1401-14. PubMed ID: 21287828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and characterization of diopside particles and their suitability along with chitosan matrix for bone tissue engineering in vitro and in vivo.
    Kumar JP; Lakshmi L; Jyothsna V; Balaji DR; Saravanan S; Moorthi A; Selvamurugan N
    J Biomed Nanotechnol; 2014 Jun; 10(6):970-81. PubMed ID: 24749392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Smart scaffolds: the future of bioceramic.
    Daculsi G
    J Mater Sci Mater Med; 2015 Apr; 26(4):154. PubMed ID: 25779511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of computationally designed scaffolds by low temperature 3D printing.
    Castilho M; Dias M; Gbureck U; Groll J; Fernandes P; Pires I; Gouveia B; Rodrigues J; Vorndran E
    Biofabrication; 2013 Sep; 5(3):035012. PubMed ID: 23887064
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications.
    Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A
    J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon nanotubes: directions and perspectives in oral regenerative medicine.
    Martins-Júnior PA; Alcântara CE; Resende RR; Ferreira AJ
    J Dent Res; 2013 Jul; 92(7):575-83. PubMed ID: 23677650
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tautomerizable β-ketonitrile copolymers for bone tissue engineering: Studies of biocompatibility and cytotoxicity.
    Lastra ML; Molinuevo MS; Giussi JM; Allegretti PE; Blaszczyk-Lezak I; Mijangos C; Cortizo MS
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():256-62. PubMed ID: 25842133
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydroxyapatite whisker reinforced 63s glass scaffolds for bone tissue engineering.
    Shuai C; Cao Y; Gao C; Feng P; Xiao T; Peng S
    Biomed Res Int; 2015; 2015():379294. PubMed ID: 25821798
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering.
    Brydone AS; Meek D; Maclaine S
    Proc Inst Mech Eng H; 2010 Dec; 224(12):1329-43. PubMed ID: 21287823
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new method of fabricating robust freeform 3D ceramic scaffolds for bone tissue regeneration.
    Seol YJ; Park DY; Park JY; Kim SW; Park SJ; Cho DW
    Biotechnol Bioeng; 2013 May; 110(5):1444-55. PubMed ID: 23192318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering.
    Denry I; Kuhn LT
    Dent Mater; 2016 Jan; 32(1):43-53. PubMed ID: 26423007
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polymeric scaffolds for bone tissue engineering.
    Liu X; Ma PX
    Ann Biomed Eng; 2004 Mar; 32(3):477-86. PubMed ID: 15095822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Applications of Bioactive Ions in Bone Regeneration.
    Lin SH; Zhang WJ; Jiang XQ
    Chin J Dent Res; 2019; 22(2):93-104. PubMed ID: 31172137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties.
    Bobbert FSL; Lietaert K; Eftekhari AA; Pouran B; Ahmadi SM; Weinans H; Zadpoor AA
    Acta Biomater; 2017 Apr; 53():572-584. PubMed ID: 28213101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid prototyping technology and its application in bone tissue engineering.
    Yuan B; Zhou SY; Chen XS
    J Zhejiang Univ Sci B; 2017 Apr.; 18(4):303-315. PubMed ID: 28378568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Manufacture of degradable polymeric scaffolds for bone regeneration.
    Ge Z; Jin Z; Cao T
    Biomed Mater; 2008 Jun; 3(2):022001. PubMed ID: 18523339
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering.
    Rosa AL; de Oliveira PT; Beloti MM
    Expert Rev Med Devices; 2008 Nov; 5(6):719-28. PubMed ID: 19025348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.