These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26502826)

  • 1. Increases in both temperature means and extremes likely facilitate invasive herbivore outbreaks.
    Ju RT; Zhu HY; Gao L; Zhou XH; Li B
    Sci Rep; 2015 Oct; 5():15715. PubMed ID: 26502826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spring warming increases the abundance of an invasive specialist insect: links to phenology and life history.
    Ju RT; Gao L; Wei SJ; Li B
    Sci Rep; 2017 Nov; 7(1):14805. PubMed ID: 29093523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tolerance to high temperature extremes in an invasive lace bug, Corythucha ciliata (Hemiptera: Tingidae), in subtropical China.
    Ju RT; Gao L; Zhou XH; Li B
    PLoS One; 2013; 8(1):e54372. PubMed ID: 23365664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate warming affects biological invasions by shifting interactions of plants and herbivores.
    Lu X; Siemann E; Shao X; Wei H; Ding J
    Glob Chang Biol; 2013 Aug; 19(8):2339-47. PubMed ID: 23640751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of temperature on the development and population growth of the sycamore lace bug, Corythucha ciliata.
    Ju RT; Wang F; Li B
    J Insect Sci; 2011; 11():16. PubMed ID: 21526932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of geographical origin of two strains of the herbivore, Eccritotarsus catarinensis, on several fitness traits in response to temperature.
    Ismail M; Brooks M
    J Therm Biol; 2016 Aug; 60():222-30. PubMed ID: 27503736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The intrinsic growth rate as a predictor of population viability under climate warming.
    Amarasekare P; Coutinho RM
    J Anim Ecol; 2013 Nov; 82(6):1240-53. PubMed ID: 23926903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct impacts of recent climate warming on insect populations.
    Robinet C; Roques A
    Integr Zool; 2010 Jun; 5(2):132-142. PubMed ID: 21392331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Life table and biological characteristics of an exotic lace bug, Corythucha marmorata (Uhler).].
    Shen JS; Zhu M; Cui XH; Li LJ
    Ying Yong Sheng Tai Xue Bao; 2016 May; 27(5):1657-1662. PubMed ID: 29732829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Night warming on hot days produces novel impacts on development, survival and reproduction in a small arthropod.
    Zhao F; Zhang W; Hoffmann AA; Ma CS
    J Anim Ecol; 2014 Jul; 83(4):769-78. PubMed ID: 24372332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the variation in Echinogammarus marinus at its southernmost limits under global warming scenarios: can the sex-ratio make a difference?
    Guerra A; Leite N; Marques JC; Ford AT; Martins I
    Sci Total Environ; 2014 Jan; 466-467():1022-9. PubMed ID: 23995258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate Change Impacts on the Potential Distribution and Abundance of the Brown Marmorated Stink Bug (Hemiptera: Pentatomidae) With Special Reference to North America and Europe.
    Kistner EJ
    Environ Entomol; 2017 Dec; 46(6):1212-1224. PubMed ID: 29069361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Future warmer seas: increased stress and susceptibility to grazing in seedlings of a marine habitat-forming species.
    Hernán G; Ortega MJ; Gándara AM; Castejón I; Terrados J; Tomas F
    Glob Chang Biol; 2017 Nov; 23(11):4530-4543. PubMed ID: 28544549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental times and age-specific life tables for Lygus lineolaris (Heteroptera: Miridae), reared at multiple constant temperatures.
    Ugine TA
    Environ Entomol; 2012 Feb; 41(1):1-10. PubMed ID: 22525054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate warming increases biological control agent impact on a non-target species.
    Lu X; Siemann E; He M; Wei H; Shao X; Ding J
    Ecol Lett; 2015 Jan; 18(1):48-56. PubMed ID: 25376303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological parameters, life table and thermal requirements of Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae) at different temperatures.
    Barbosa LR; Santos F; Soliman EP; Rodrigues AP; Wilcken CF; Campos JM; Zanuncio AJV; Zanuncio JC
    Sci Rep; 2019 Jul; 9(1):10174. PubMed ID: 31308394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological responses of Corythucha ciliata adults to high temperatures under laboratory and field conditions.
    Ju RT; Gao L; Zhou XH; Li B
    J Therm Biol; 2014 Oct; 45():15-21. PubMed ID: 25436946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drivers of climate change impacts on bird communities.
    Pearce-Higgins JW; Eglington SM; Martay B; Chamberlain DE
    J Anim Ecol; 2015 Jul; 84(4):943-54. PubMed ID: 25757576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of warming with temperature oscillations on a low-latitude aphid, Aphis craccivora.
    Chen CY; Chiu MC; Kuo MH
    Bull Entomol Res; 2013 Aug; 103(4):406-13. PubMed ID: 23448233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.