These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 26503017)

  • 1. DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains.
    Sun H; Chen ZH; Chen F; Xie L; Zhang G; Vincze E; Wu F
    BMC Plant Biol; 2015 Oct; 15():259. PubMed ID: 26503017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genotypic differences in cadmium transport in developing barley grains.
    Lin L; Chen F; Cai Y; Chen ZH; Cao F
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):7009-7015. PubMed ID: 28092001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in grain ultrastructure, phytochemical and proteomic profiles between the two contrasting grain Cd-accumulation barley genotypes.
    Sun H; Cao F; Wang N; Zhang M; Mosaddek Ahmed I; Zhang G; Wu F
    PLoS One; 2013; 8(11):e79158. PubMed ID: 24260165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of zinc-starvation-induced ZIP transporters from barley roots.
    Pedas P; Schjoerring JK; Husted S
    Plant Physiol Biochem; 2009 May; 47(5):377-83. PubMed ID: 19249224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genotypic differences in effect of Cd on growth and mineral concentrations in barley seedlings.
    Wu FB; Zhang G
    Bull Environ Contam Toxicol; 2002 Aug; 69(2):219-27. PubMed ID: 12107698
    [No Abstract]   [Full Text] [Related]  

  • 6. Genome-wide transcriptome and functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley.
    Cao F; Chen F; Sun H; Zhang G; Chen ZH; Wu F
    BMC Genomics; 2014 Jul; 15(1):611. PubMed ID: 25038590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadmium exposure affects iron acquisition in barley (Hordeum vulgare) seedlings.
    Astolfi S; Ortolani MR; Catarcione G; Paolacci AR; Cesco S; Pinton R; Ciaffi M
    Physiol Plant; 2014 Dec; 152(4):646-59. PubMed ID: 24724721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The HvNramp5 Transporter Mediates Uptake of Cadmium and Manganese, But Not Iron.
    Wu D; Yamaji N; Yamane M; Kashino-Fujii M; Sato K; Feng Ma J
    Plant Physiol; 2016 Nov; 172(3):1899-1910. PubMed ID: 27621428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply.
    Tiong J; McDonald GK; Genc Y; Pedas P; Hayes JE; Toubia J; Langridge P; Huang CY
    New Phytol; 2014 Jan; 201(1):131-143. PubMed ID: 24033183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide association mapping of cadmium accumulation in different organs of barley.
    Wu D; Sato K; Ma JF
    New Phytol; 2015 Nov; 208(3):817-29. PubMed ID: 26061418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two mulberry phytochelatin synthase genes confer zinc/cadmium tolerance and accumulation in transgenic Arabidopsis and tobacco.
    Fan W; Guo Q; Liu C; Liu X; Zhang M; Long D; Xiang Z; Zhao A
    Gene; 2018 Mar; 645():95-104. PubMed ID: 29277319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice.
    Sasaki A; Yamaji N; Ma JF
    J Exp Bot; 2014 Nov; 65(20):6013-21. PubMed ID: 25151617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and physiological mechanisms associated with root exposure to mercury in barley.
    Lopes MS; Iglesia-Turiño S; Cabrera-Bosquet L; Serret MD; Bort J; Febrero A; Araus JL
    Metallomics; 2013 Sep; 5(9):1305-15. PubMed ID: 23925371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of a gene network in durum wheat roots exposed to cadmium.
    Aprile A; Sabella E; Vergine M; Genga A; Siciliano M; Nutricati E; Rampino P; De Pascali M; Luvisi A; Miceli A; Negro C; De Bellis L
    BMC Plant Biol; 2018 Oct; 18(1):238. PubMed ID: 30326849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The expression of heterologous Fe (III) phytosiderophore transporter HvYS1 in rice increases Fe uptake, translocation and seed loading and excludes heavy metals by selective Fe transport.
    Banakar R; Alvarez Fernández Á; Abadía J; Capell T; Christou P
    Plant Biotechnol J; 2017 Apr; 15(4):423-432. PubMed ID: 27633505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants.
    Schneider T; Schellenberg M; Meyer S; Keller F; Gehrig P; Riedel K; Lee Y; Eberl L; Martinoia E
    Proteomics; 2009 May; 9(10):2668-77. PubMed ID: 19391183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements.
    Chen F; Dong J; Wang F; Wu F; Zhang G; Li G; Chen Z; Chen J; Wei K
    Chemosphere; 2007 May; 67(10):2082-8. PubMed ID: 17257649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in Mn uptake and subcellular distribution in different barley genotypes as a response to Cd toxicity.
    Wu F; Dong J; Cai Y; Chen F; Zhang G
    Sci Total Environ; 2007 Oct; 385(1-3):228-34. PubMed ID: 16580711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arbuscular mycorrhizal fungi increase grain zinc concentration and modify the expression of root ZIP transporter genes in a modern barley (Hordeum vulgare) cultivar.
    Watts-Williams SJ; Cavagnaro TR
    Plant Sci; 2018 Sep; 274():163-170. PubMed ID: 30080600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation Strategies of Halophytic Barley
    Isayenkov S; Hilo A; Rizzo P; Tandron Moya YA; Rolletschek H; Borisjuk L; Radchuk V
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.