BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26503252)

  • 21. Role of Double-Strand Break End-Tethering during Gene Conversion in Saccharomyces cerevisiae.
    Jain S; Sugawara N; Haber JE
    PLoS Genet; 2016 Apr; 12(4):e1005976. PubMed ID: 27074148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA-RNA hybrids at DSBs interfere with repair by homologous recombination.
    Ortega P; Mérida-Cerro JA; Rondón AG; Gómez-González B; Aguilera A
    Elife; 2021 Jul; 10():. PubMed ID: 34236317
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overcoming the chromatin barrier to end resection.
    Chen H; Symington LS
    Cell Res; 2013 Mar; 23(3):317-9. PubMed ID: 23147792
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of Dnl4-Lif1 in nonhomologous end-joining repair complex assembly and suppression of homologous recombination.
    Zhang Y; Hefferin ML; Chen L; Shim EY; Tseng HM; Kwon Y; Sung P; Lee SE; Tomkinson AE
    Nat Struct Mol Biol; 2007 Jul; 14(7):639-46. PubMed ID: 17589524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-Resolution Mapping of Homologous Recombination Events in rad3 Hyper-Recombination Mutants in Yeast.
    Andersen SL; Zhang A; Dominska M; Moriel-Carretero M; Herrera-Moyano E; Aguilera A; Petes TD
    PLoS Genet; 2016 Mar; 12(3):e1005938. PubMed ID: 26968037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resection is responsible for loss of transcription around a double-strand break in Saccharomyces cerevisiae.
    Manfrini N; Clerici M; Wery M; Colombo CV; Descrimes M; Morillon A; d'Adda di Fagagna F; Longhese MP
    Elife; 2015 Jul; 4():. PubMed ID: 26231041
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins.
    Lisby M; Barlow JH; Burgess RC; Rothstein R
    Cell; 2004 Sep; 118(6):699-713. PubMed ID: 15369670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Processing of DNA Double-Strand Breaks in Yeast.
    Gnügge R; Oh J; Symington LS
    Methods Enzymol; 2018; 600():1-24. PubMed ID: 29458754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Saccharomyces cerevisiae PDS1 and RAD9 checkpoint genes control different DNA double-strand break repair pathways.
    DeMase D; Zeng L; Cera C; Fasullo M
    DNA Repair (Amst); 2005 Jan; 4(1):59-69. PubMed ID: 15533838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclin-dependent kinase-dependent phosphorylation of Lif1 and Sae2 controls imprecise nonhomologous end joining accompanied by double-strand break resection.
    Matsuzaki K; Terasawa M; Iwasaki D; Higashide M; Shinohara M
    Genes Cells; 2012 Jun; 17(6):473-93. PubMed ID: 22563681
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting.
    Chung WH; Zhu Z; Papusha A; Malkova A; Ira G
    PLoS Genet; 2010 May; 6(5):e1000948. PubMed ID: 20485519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mRNA export adaptor Yra1 contributes to DNA double-strand break repair through its C-box domain.
    Infantino V; Tutucci E; Yeh Martin N; Zihlmann A; Garcia-Molinero V; Silvano G; Palancade B; Stutz F
    PLoS One; 2019; 14(4):e0206336. PubMed ID: 30951522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FANCJ helicase controls the balance between short- and long-tract gene conversions between sister chromatids.
    Nath S; Somyajit K; Mishra A; Scully R; Nagaraju G
    Nucleic Acids Res; 2017 Sep; 45(15):8886-8900. PubMed ID: 28911102
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterizing resection at random and unique chromosome double-strand breaks and telomere ends.
    Ma W; Westmoreland J; Nakai W; Malkova A; Resnick MA
    Methods Mol Biol; 2011; 745():15-31. PubMed ID: 21660686
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Din7 and Mhr1 expression levels regulate double-strand-break-induced replication and recombination of mtDNA at ori5 in yeast.
    Ling F; Hori A; Yoshitani A; Niu R; Yoshida M; Shibata T
    Nucleic Acids Res; 2013 Jun; 41(11):5799-816. PubMed ID: 23598996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single molecule approaches to monitor the recognition and resection of double-stranded DNA breaks during homologous recombination.
    Carrasco C; Dillingham MS; Moreno-Herrero F
    DNA Repair (Amst); 2014 Aug; 20():119-129. PubMed ID: 24569169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Moving forward one step back at a time: reversibility during homologous recombination.
    Piazza A; Heyer WD
    Curr Genet; 2019 Dec; 65(6):1333-1340. PubMed ID: 31123771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physical and Genetic Assays for the Study of DNA Joint Molecules Metabolism and Multi-invasion-Induced Rearrangements in S. cerevisiae.
    Piazza A; Rajput P; Heyer WD
    Methods Mol Biol; 2021; 2153():535-554. PubMed ID: 32840803
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SNM1A is crucial for efficient repair of complex DNA breaks in human cells.
    Swift LP; Lagerholm BC; Henderson LR; Ratnaweera M; Baddock HT; Sengerova B; Lee S; Cruz-Migoni A; Waithe D; Renz C; Ulrich HD; Newman JA; Schofield CJ; McHugh PJ
    Nat Commun; 2024 Jun; 15(1):5392. PubMed ID: 38918391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interhomolog Homologous Recombination in Mouse Embryonic Stem Cells.
    Vanoli F; Prakash R; White T; Jasin M
    Methods Mol Biol; 2021; 2153():127-143. PubMed ID: 32840777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.