These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26503335)

  • 1. Security of Semi-Device-Independent Random Number Expansion Protocols.
    Li DD; Wen QY; Wang YK; Zhou YQ; Gao F
    Sci Rep; 2015 Oct; 5():15543. PubMed ID: 26503335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-key bound for semi-device-independent quantum key distribution.
    Zhou C; Xu P; Bao WS; Wang Y; Zhang Y; Jiang MS; Li HW
    Opt Express; 2017 Jul; 25(15):16971-16980. PubMed ID: 28789196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the security of semi-device-independent QKD protocols.
    Chaturvedi A; Ray M; Veynar R; Pawłowski M
    Quantum Inf Process; 2018; 17(6):131. PubMed ID: 31007638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Realization of Device-Independent Quantum Randomness Expansion.
    Li MH; Zhang X; Liu WZ; Zhao SR; Bai B; Liu Y; Zhao Q; Peng Y; Zhang J; Zhang Y; Munro WJ; Ma X; Zhang Q; Fan J; Pan JW
    Phys Rev Lett; 2021 Feb; 126(5):050503. PubMed ID: 33605771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tight Analytic Bound on the Trade-Off between Device-Independent Randomness and Nonlocality.
    Wooltorton L; Brown P; Colbeck R
    Phys Rev Lett; 2022 Oct; 129(15):150403. PubMed ID: 36269949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Device-independent quantum random-number generation.
    Liu Y; Zhao Q; Li MH; Guan JY; Zhang Y; Bai B; Zhang W; Liu WZ; Wu C; Yuan X; Li H; Munro WJ; Wang Z; You L; Zhang J; Ma X; Fan J; Zhang Q; Pan JW
    Nature; 2018 Oct; 562(7728):548-551. PubMed ID: 30287887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weak randomness impacts the security of reference-frame-independent quantum key distribution.
    Zhang CM; Wang WB; Li HW; Wang Q
    Opt Lett; 2019 Mar; 44(5):1226-1229. PubMed ID: 30821754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Randomness Amplification under Minimal Fundamental Assumptions on the Devices.
    Ramanathan R; Brandão FG; Horodecki K; Horodecki M; Horodecki P; Wojewódka H
    Phys Rev Lett; 2016 Dec; 117(23):230501. PubMed ID: 27982660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proof-of-principle implementation of a quantum random number generator with independent devices and a dimension witness.
    An XB; Han YG; Yin ZQ; Huang W; Chen W; Wang S; Guo GC; Han ZF
    Opt Lett; 2017 Oct; 42(20):4139-4142. PubMed ID: 29028032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum vs Noncontextual Semi-Device-Independent Randomness Certification.
    Roch I Carceller C; Flatt K; Lee H; Bae J; Brask JB
    Phys Rev Lett; 2022 Jul; 129(5):050501. PubMed ID: 35960580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimentally generated randomness certified by the impossibility of superluminal signals.
    Bierhorst P; Knill E; Glancy S; Zhang Y; Mink A; Jordan S; Rommal A; Liu YK; Christensen B; Nam SW; Stevens MJ; Shalm LK
    Nature; 2018 Apr; 556(7700):223-226. PubMed ID: 29643486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing randomness of series generated in an optical Bell's experiment.
    Nonaka M; Agüero M; Kovalsky M; Hnilo A
    Appl Opt; 2023 Apr; 62(12):3105-3111. PubMed ID: 37133157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Low-Latency Device-Independent Quantum Randomness.
    Zhang Y; Shalm LK; Bienfang JC; Stevens MJ; Mazurek MD; Nam SW; Abellán C; Amaya W; Mitchell MW; Fu H; Miller CA; Mink A; Knill E
    Phys Rev Lett; 2020 Jan; 124(1):010505. PubMed ID: 31976704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semi-Device-Independent Framework Based on Restricted Distrust in Prepare-and-Measure Experiments.
    Tavakoli A
    Phys Rev Lett; 2021 May; 126(21):210503. PubMed ID: 34114870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trading Locality for Time: Certifiable Randomness from Low-Depth Circuits.
    Coudron M; Stark J; Vidick T
    Commun Math Phys; 2021; 382(1):49-86. PubMed ID: 33746232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Realistic noise-tolerant randomness amplification using finite number of devices.
    Brandão FG; Ramanathan R; Grudka A; Horodecki K; Horodecki M; Horodecki P; Szarek T; Wojewódka H
    Nat Commun; 2016 Apr; 7():11345. PubMed ID: 27098302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random numbers certified by Bell's theorem.
    Pironio S; Acín A; Massar S; de la Giroday AB; Matsukevich DN; Maunz P; Olmschenk S; Hayes D; Luo L; Manning TA; Monroe C
    Nature; 2010 Apr; 464(7291):1021-4. PubMed ID: 20393558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-testing quantum random number generator.
    Lunghi T; Brask JB; Lim CC; Lavigne Q; Bowles J; Martin A; Zbinden H; Brunner N
    Phys Rev Lett; 2015 Apr; 114(15):150501. PubMed ID: 25933297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Speed Device-Independent Quantum Random Number Generation without a Detection Loophole.
    Liu Y; Yuan X; Li MH; Zhang W; Zhao Q; Zhong J; Cao Y; Li YH; Chen LK; Li H; Peng T; Chen YA; Peng CZ; Shi SC; Wang Z; You L; Ma X; Fan J; Zhang Q; Pan JW
    Phys Rev Lett; 2018 Jan; 120(1):010503. PubMed ID: 29350962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Certified randomness in quantum physics.
    Acín A; Masanes L
    Nature; 2016 Dec; 540(7632):213-219. PubMed ID: 27929003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.