BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

509 related articles for article (PubMed ID: 26503342)

  • 41. Effects of the Entomopathogenic Fungus Metarhizium anisopliae on the Mortality and Immune Response of Locusta migratoria.
    Jiang W; Peng Y; Ye J; Wen Y; Liu G; Xie J
    Insects; 2019 Dec; 11(1):. PubMed ID: 31906210
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae) pathogenesis.
    Wang Y; Yang P; Cui F; Kang L
    PLoS Pathog; 2013 Jan; 9(1):e1003102. PubMed ID: 23326229
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Involvement of MaSom1, a downstream transcriptional factor of cAMP/PKA pathway, in conidial yield, stress tolerances, and virulence in Metarhizium acridum.
    Du Y; Jin K; Xia Y
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5611-5623. PubMed ID: 29713793
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transcriptome-wide survey, gene expression profiling and exogenous chemical-induced transcriptional responses of cytochrome P450 superfamily genes in migratory locust (Locusta migratoria).
    Zhang X; Kang X; Wu H; Silver K; Zhang J; Ma E; Zhu KY
    Insect Biochem Mol Biol; 2018 Sep; 100():66-77. PubMed ID: 29959977
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The mechanism for microsporidian parasite suppression of the hindgut bacteria of the migratory locust Locusta migratoria manilensis.
    Tan SQ; Zhang KQ; Chen HX; Ge Y; Ji R; Shi WP
    Sci Rep; 2015 Nov; 5():17365. PubMed ID: 26612678
    [TBL] [Abstract][Full Text] [Related]  

  • 46. De novo transcriptome analysis of wing development-related signaling pathways in Locusta migratoria manilensis and Ostrinia furnacalis (Guenée).
    Liu S; Wei W; Chu Y; Zhang L; Shen J; An C
    PLoS One; 2014; 9(9):e106770. PubMed ID: 25207539
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The carbon catabolite repressor CreA is an essential virulence factor of Metarhizium acridum against Locusta migratoria.
    Song D; Jin Y; Shi Y; Xia Y; Peng G
    Pest Manag Sci; 2022 Aug; 78(8):3676-3684. PubMed ID: 35613131
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Annotation of novel neuropeptide precursors in the migratory locust based on transcript screening of a public EST database and mass spectrometry.
    Clynen E; Huybrechts J; Verleyen P; De Loof A; Schoofs L
    BMC Genomics; 2006 Aug; 7():201. PubMed ID: 16899111
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Calcineurin modulates growth, stress tolerance, and virulence in Metarhizium acridum and its regulatory network.
    Cao Y; Du M; Luo S; Xia Y
    Appl Microbiol Biotechnol; 2014 Oct; 98(19):8253-65. PubMed ID: 24931310
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 20-Hydroxyecdysone activates PGRP-SA mediated immune response in Locusta migratoria.
    Han P; Han J; Fan J; Zhang M; Ma E; Li S; Fan R; Zhang J
    Dev Comp Immunol; 2017 Jul; 72():128-139. PubMed ID: 28254619
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Downregulation of pre-rRNA processing gene Mamrd1 decreases growth, conidiation and virulence in the entomopathogenic fungus Metarhizium acridum.
    Cao Y; Li K; Xia Y
    Res Microbiol; 2011 Sep; 162(7):729-36. PubMed ID: 21624460
    [TBL] [Abstract][Full Text] [Related]  

  • 52. MaMk1, a FUS3/KSS1-type mitogen-activated protein kinase gene, is required for appressorium formation, and insect cuticle penetration of the entomopathogenic fungus Metarhizium acridum.
    Jin K; Han L; Xia Y
    J Invertebr Pathol; 2014 Jan; 115():68-75. PubMed ID: 24184951
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MaPacC, a pH-responsive transcription factor, negatively regulates thermotolerance and contributes to conidiation and virulence in Metarhizium acridum.
    Zhang M; Wei Q; Xia Y; Jin K
    Curr Genet; 2020 Apr; 66(2):397-408. PubMed ID: 31471639
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Contributions of β-tubulin to cellular morphology, sporulation and virulence in the insect-fungal pathogen, Metarhizium acridum.
    Zhang J; Jin K; Xia Y
    Fungal Genet Biol; 2017 Jun; 103():16-24. PubMed ID: 28336393
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Ste12-like transcription factor MaSte12 is involved in pathogenicity by regulating the appressorium formation in the entomopathogenic fungus, Metarhizium acridum.
    Wei Q; Du Y; Jin K; Xia Y
    Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8571-8584. PubMed ID: 29079863
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Group I CDAs are responsible for a selective CHC-independent cuticular barrier in Locusta migratoria.
    Zhang T; Ma P; Zhou J; He Y; Liu W; Liu X; Zhang X; Yu R; Zhang M; Moussian B; Zhang J
    Pestic Biochem Physiol; 2021 Jun; 175():104854. PubMed ID: 33993972
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transformation of glycerate kinase (GLYK) into Metarhizium acridum increases virulence to locust.
    Tong X; Wang Y; Li J; Hu S; Yang P; Kang L
    Pest Manag Sci; 2021 Mar; 77(3):1465-1475. PubMed ID: 33128436
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Large-scale transcriptome analysis of retroelements in the migratory locust, Locusta migratoria.
    Jiang F; Yang M; Guo W; Wang X; Kang L
    PLoS One; 2012; 7(7):e40532. PubMed ID: 22792363
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cys-loop ligand-gated ion channel gene discovery in the Locusta migratoria manilensis through the neuron transcriptome.
    Wang X; Meng X; Liu C; Gao H; Zhang Y; Liu Z
    Gene; 2015 May; 561(2):276-82. PubMed ID: 25701599
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification and characterisation of ten glutathione S-transferase genes from oriental migratory locust, Locusta migratoria manilensis (Meyen).
    Qin G; Jia M; Liu T; Xuan T; Yan Zhu K; Guo Y; Ma E; Zhang J
    Pest Manag Sci; 2011 Jun; 67(6):697-704. PubMed ID: 21413139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.