These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods. Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118 [TBL] [Abstract][Full Text] [Related]
4. Relativistic and electron-correlation effects on the nuclear magnetic resonance shieldings of molecules containing tin and lead atoms. Maldonado AF; Aucar GA J Phys Chem A; 2014 Sep; 118(36):7863-75. PubMed ID: 25110942 [TBL] [Abstract][Full Text] [Related]
5. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer. Hanni M; Lantto P; Ilias M; Jensen HJ; Vaara J J Chem Phys; 2007 Oct; 127(16):164313. PubMed ID: 17979344 [TBL] [Abstract][Full Text] [Related]
6. Theoretical predictions of nuclear magnetic resonance parameters in a novel organo-xenon species: chemical shifts and nuclear quadrupole couplings in HXeCCH. Straka M; Lantto P; Räsänen M; Vaara J J Chem Phys; 2007 Dec; 127(23):234314. PubMed ID: 18154389 [TBL] [Abstract][Full Text] [Related]
8. Rovibrational effects on NMR shieldings in a heavy-element system: XeF2. Lantto P; Kangasvieri S; Vaara J J Chem Phys; 2012 Dec; 137(21):214309. PubMed ID: 23231233 [TBL] [Abstract][Full Text] [Related]
9. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides. Komorovsky S; Repisky M; Malkin E; Demissie TB; Ruud K J Chem Theory Comput; 2015 Aug; 11(8):3729-39. PubMed ID: 26574455 [TBL] [Abstract][Full Text] [Related]
10. Calculations of nuclear quadrupole coupling in noble gas-noble metal fluorides: interplay of relativistic and electron correlation effects. Lantto P; Vaara J J Chem Phys; 2006 Nov; 125(17):174315. PubMed ID: 17100447 [TBL] [Abstract][Full Text] [Related]
11. Calculation of binary magnetic properties and potential energy curve in xenon dimer: second virial coefficient of (129)Xe nuclear shielding. Hanni M; Lantto P; Runeberg N; Jokisaari J; Vaara J J Chem Phys; 2004 Sep; 121(12):5908-19. PubMed ID: 15367019 [TBL] [Abstract][Full Text] [Related]
12. On relativistic effects in ground state potential curves of Zn2, Cd2, and Hg2 dimers. A CCSD(T) study. Bucinský L; Biskupic S; Ilcin M; Lukes V; Laurinc V J Comput Chem; 2009 Jan; 30(1):65-74. PubMed ID: 18508307 [TBL] [Abstract][Full Text] [Related]
13. Electric field effects on the shielding constants of noble gases: a four-component relativistic Hartree-Fock study. Pecul M; Saue T; Ruud K; Rizzo A J Chem Phys; 2004 Aug; 121(7):3051-7. PubMed ID: 15291614 [TBL] [Abstract][Full Text] [Related]
14. (129)Xe chemical shift by the perturbational relativistic method: xenon fluorides. Lantto P; Vaara J J Chem Phys; 2007 Aug; 127(8):084312. PubMed ID: 17764253 [TBL] [Abstract][Full Text] [Related]
15. A closed-shell coupled-cluster treatment of the Breit-Pauli first-order relativistic energy correction. Coriani S; Helgaker T; Jørgensen P; Klopper W J Chem Phys; 2004 Oct; 121(14):6591-8. PubMed ID: 15473713 [TBL] [Abstract][Full Text] [Related]
16. On the geometry dependence of the nuclear magnetic resonance chemical shift of mercury in thiolate complexes: A relativistic density functional theory study. Wu H; Hemmingsen L; Sauer SPA Magn Reson Chem; 2024 Sep; 62(9):648-669. PubMed ID: 38773942 [TBL] [Abstract][Full Text] [Related]
17. A gauge-independent zeroth-order regular approximation to the exact relativistic Hamiltonian--formulation and applications. Filatov M; Cremer D J Chem Phys; 2005 Jan; 122(4):44104. PubMed ID: 15740232 [TBL] [Abstract][Full Text] [Related]
18. Performance of nonrelativistic and quasi-relativistic hybrid DFT for the prediction of electric and magnetic hyperfine parameters in 57Fe Mössbauer spectra. Sinnecker S; Slep LD; Bill E; Neese F Inorg Chem; 2005 Apr; 44(7):2245-54. PubMed ID: 15792459 [TBL] [Abstract][Full Text] [Related]
19. Electric field gradients in Hg compounds: molecular orbital (MO) analysis and comparison of 4-component and 2-component (ZORA) methods. Arcisauskaite V; Knecht S; Sauer SP; Hemmingsen L Phys Chem Chem Phys; 2012 Dec; 14(46):16070-9. PubMed ID: 23111689 [TBL] [Abstract][Full Text] [Related]
20. A comparison of two-component and four-component approaches for calculations of spin-spin coupling constants and NMR shielding constants of transition metal cyanides. Wodyński A; Repiský M; Pecul M J Chem Phys; 2012 Jul; 137(1):014311. PubMed ID: 22779652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]