These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

586 related articles for article (PubMed ID: 26503739)

  • 21. Relativistic effects in HgHe and HgXe CCSD(T) ground state potential curves. Low-density viscosity simulations of Hg:Xe mixture.
    Bučinský L; Biskupič S; Ilčin M; Lukeš V; Laurinc V
    J Comput Chem; 2011 Jan; 32(2):356-67. PubMed ID: 20662077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complete basis set prediction of methanol isotropic nuclear magnetic shieldings and indirect nuclear spin-spin coupling constants (SSCC) using polarization-consistent and XZP basis sets and B3LYP and BHandH density functionals.
    Kupka T
    Magn Reson Chem; 2009 Aug; 47(8):674-83. PubMed ID: 19431153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Treatment of scalar-relativistic effects on nuclear magnetic shieldings using a spin-free exact-two-component approach.
    Cheng L; Gauss J; Stanton JF
    J Chem Phys; 2013 Aug; 139(5):054105. PubMed ID: 23927241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scalar Relativistic Computations of Nuclear Magnetic Shielding and g-Shifts with the Zeroth-Order Regular Approximation and Range-Separated Hybrid Density Functionals.
    Aquino F; Govind N; Autschbach J
    J Chem Theory Comput; 2011 Oct; 7(10):3278-92. PubMed ID: 26598162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parity nonconservation contribution to the nuclear magnetic resonance shielding constants of chiral molecules: a four-component relativistic study.
    Bast R; Schwerdtfeger P; Saue T
    J Chem Phys; 2006 Aug; 125(6):64504. PubMed ID: 16942295
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relativistic effects on the NMR parameters of Si, Ge, Sn, and Pb alkynyl compounds: Scalar versus spin-orbit effects.
    Demissie TB
    J Chem Phys; 2017 Nov; 147(17):174301. PubMed ID: 29117685
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electron correlation within the relativistic no-pair approximation.
    Almoukhalalati A; Knecht S; Jensen HJ; Dyall KG; Saue T
    J Chem Phys; 2016 Aug; 145(7):074104. PubMed ID: 27544084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling 21Ne NMR parameters for carbon nanosystems.
    Kupka T; Nieradka M; Kaminský J; Stobiński L
    Magn Reson Chem; 2013 Oct; 51(10):676-81. PubMed ID: 23970499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd.
    Peterson KA; Figgen D; Dolg M; Stoll H
    J Chem Phys; 2007 Mar; 126(12):124101. PubMed ID: 17411102
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relativistic diffusion Monte Carlo method: zeroth-order regular approximation-diffusion Monte Carlo method in a spin-free formalism.
    Nakatsuka Y; Nakajima T
    J Chem Phys; 2012 Oct; 137(15):154103. PubMed ID: 23083144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relativistic effect on 77Se NMR chemical shifts of various selenium species in the framework of zeroth-order regular approximation.
    Nakanishi W; Hayashi S; Katsura Y; Hada M
    J Phys Chem A; 2011 Aug; 115(31):8721-30. PubMed ID: 21710994
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calculation of
    Rusakova IL; Rusakov YY; Krivdin LB
    J Phys Chem A; 2017 Jun; 121(25):4793-4803. PubMed ID: 28613865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron correlation and relativistic effects in the secondary NMR isotope shifts of CSe2.
    Lantto P; Kangasvieri S; Vaara J
    Phys Chem Chem Phys; 2013 Oct; 15(40):17468-78. PubMed ID: 24025992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fully Relativistic Calculations of Faraday and Nuclear Spin-Induced Optical Rotation in Xenon.
    Ikäläinen S; Lantto P; Vaara J
    J Chem Theory Comput; 2012 Jan; 8(1):91-8. PubMed ID: 26592871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Halogen effect on structure and 13C NMR chemical shift of 3,6-disubstituted-N-alkyl carbazoles.
    Radula-Janik K; Kupka T; Ejsmont K; Daszkiewicz Z; Sauer SP
    Magn Reson Chem; 2013 Oct; 51(10):630-5. PubMed ID: 23922027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimized Slater-type basis sets for the elements 1-118.
    Van Lenthe E; Baerends EJ
    J Comput Chem; 2003 Jul; 24(9):1142-56. PubMed ID: 12759913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Influence of a Presence of a Heavy Atom on (13)C Shielding Constants in Organomercury Compounds and Halogen Derivatives.
    Wodyński A; Gryff-Keller A; Pecul M
    J Chem Theory Comput; 2013 Apr; 9(4):1909-17. PubMed ID: 26583542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accurate relativistic energy-consistent pseudopotentials for the superheavy elements 111 to 118 including quantum electrodynamic effects.
    Hangele T; Dolg M; Hanrath M; Cao X; Schwerdtfeger P
    J Chem Phys; 2012 Jun; 136(21):214105. PubMed ID: 22697528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scalar Breit interaction for molecular calculations.
    Sun S; Ehrman J; Zhang T; Sun Q; Dyall KG; Li X
    J Chem Phys; 2023 May; 158(17):. PubMed ID: 37139994
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis-, and trans-1,2-difluoroethylenes.
    Nozirov F; Kupka T; Stachów M
    J Chem Phys; 2014 Apr; 140(14):144303. PubMed ID: 24735295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.