These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26503850)

  • 1. The C-Terminal Zwitterionic Sequence of CotB1 Is Essential for Biosilicification of the Bacillus cereus Spore Coat.
    Motomura K; Ikeda T; Matsuyama S; Abdelhamid MA; Tanaka T; Ishida T; Hirota R; Kuroda A
    J Bacteriol; 2016 Jan; 198(2):276-82. PubMed ID: 26503850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Affinity purification of recombinant proteins using a novel silica-binding peptide as a fusion tag.
    Abdelhamid MA; Motomura K; Ikeda T; Ishida T; Hirota R; Kuroda A
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5677-84. PubMed ID: 24756322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ExsA protein of Bacillus cereus is required for assembly of coat and exosporium onto the spore surface.
    Bailey-Smith K; Todd SJ; Southworth TW; Proctor J; Moir A
    J Bacteriol; 2005 Jun; 187(11):3800-6. PubMed ID: 15901704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Morphogenetic Protein CotE Positions Exosporium Proteins CotY and ExsY during Sporulation of Bacillus cereus.
    Lablaine A; Serrano M; Bressuire-Isoard C; Chamot S; Bornard I; Carlin F; Henriques AO; Broussolle V
    mSphere; 2021 Apr; 6(2):. PubMed ID: 33883264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of volcanic ash particles for protein affinity purification with a minimized silica-binding tag.
    Abdelhamid MA; Ikeda T; Motomura K; Tanaka T; Ishida T; Hirota R; Kuroda A
    J Biosci Bioeng; 2016 Nov; 122(5):633-638. PubMed ID: 27212265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ExsY and CotY are required for the correct assembly of the exosporium and spore coat of Bacillus cereus.
    Johnson MJ; Todd SJ; Ball DA; Shepherd AM; Sylvestre P; Moir A
    J Bacteriol; 2006 Nov; 188(22):7905-13. PubMed ID: 16980471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stoichiometry, Absolute Abundance, and Localization of Proteins in the Bacillus cereus Spore Coat Insoluble Fraction Determined Using a QconCAT Approach.
    Stelder SK; Benito de Moya C; Hoefsloot HCJ; de Koning LJ; Brul S; de Koster CG
    J Proteome Res; 2018 Feb; 17(2):903-917. PubMed ID: 29260567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteins Encoded by the
    Ghosh A; Manton JD; Mustafa AR; Gupta M; Ayuso-Garcia A; Rees EJ; Christie G
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a spore-specific protein of the Bacillus cereus group.
    From C; van der Voort M; Abee T; Granum PE
    FEMS Microbiol Lett; 2012 Jun; 331(2):152-9. PubMed ID: 22458449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sporulation Temperature Reveals a Requirement for CotE in the Assembly of both the Coat and Exosporium Layers of Bacillus cereus Spores.
    Bressuire-Isoard C; Bornard I; Henriques AO; Carlin F; Broussolle V
    Appl Environ Microbiol; 2016 Jan; 82(1):232-43. PubMed ID: 26497467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial biosilicification: a new insight into the global silicon cycle.
    Ikeda T
    Biosci Biotechnol Biochem; 2021 May; 85(6):1324-1331. PubMed ID: 33877302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bacillus cereus mutant defective in spore coat deposition.
    Stelma GN; Aronson AI; Fitz-James PC
    J Gen Microbiol; 1980 Jan; 116(1):173-85. PubMed ID: 6767805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations of spore coat processing and protein turnover in a Bacillus cereus mutant with a defective postexponential intracellular protease.
    Cheng YS; Aronson AI
    Proc Natl Acad Sci U S A; 1977 Mar; 74(3):1254-8. PubMed ID: 15254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of a germination operon from Bacillus thuringiensis.
    Gai Y; Liu G; Tan H
    Antonie Van Leeuwenhoek; 2006 Feb; 89(2):251-9. PubMed ID: 16710636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of factors influencing the rate of germination of spores of Bacillus subtilis by very high pressure.
    Black EP; Wei J; Atluri S; Cortezzo DE; Koziol-Dube K; Hoover DG; Setlow P
    J Appl Microbiol; 2007 Jan; 102(1):65-76. PubMed ID: 17184321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Architecture and high-resolution structure of Bacillus thuringiensis and Bacillus cereus spore coat surfaces.
    Plomp M; Leighton TJ; Wheeler KE; Malkin AJ
    Langmuir; 2005 Aug; 21(17):7892-8. PubMed ID: 16089397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The silicon layer supports acid resistance of Bacillus cereus spores.
    Hirota R; Hata Y; Ikeda T; Ishida T; Kuroda A
    J Bacteriol; 2010 Jan; 192(1):111-6. PubMed ID: 19880606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acids in the Bacillus subtilis morphogenetic protein SpoIVA with roles in spore coat and cortex formation.
    Catalano FA; Meador-Parton J; Popham DL; Driks A
    J Bacteriol; 2001 Mar; 183(5):1645-54. PubMed ID: 11160095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of Bacillus cereus temperature-sensitive mutants altered in spore coat formation.
    Stelma GN; Aronson AI; Fitz-James P
    J Bacteriol; 1978 Jun; 134(3):1157-70. PubMed ID: 96097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of Bacillus subtilis spore killing by and resistance to an acidic Fe-EDTA-iodide-ethanol formulation.
    Shapiro MP; Setlow P
    J Appl Microbiol; 2006 Apr; 100(4):746-53. PubMed ID: 16553729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.