BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 26503852)

  • 1. Sarcosine Catabolism in Pseudomonas aeruginosa Is Transcriptionally Regulated by SouR.
    Willsey GG; Wargo MJ
    J Bacteriol; 2016 Jan; 198(2):301-10. PubMed ID: 26503852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism.
    Wargo MJ; Szwergold BS; Hogan DA
    J Bacteriol; 2008 Apr; 190(8):2690-9. PubMed ID: 17951379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Choline Catabolism in Burkholderia thailandensis Is Regulated by Multiple Glutamine Amidotransferase 1-Containing AraC Family Transcriptional Regulators.
    Nock AM; Wargo MJ
    J Bacteriol; 2016 Sep; 198(18):2503-14. PubMed ID: 27381916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the GbdR regulon in Pseudomonas aeruginosa.
    Hampel KJ; LaBauve AE; Meadows JA; Fitzsimmons LF; Nock AM; Wargo MJ
    J Bacteriol; 2014 Jan; 196(1):7-15. PubMed ID: 24097953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GbdR regulates Pseudomonas aeruginosa plcH and pchP transcription in response to choline catabolites.
    Wargo MJ; Ho TC; Gross MJ; Whittaker LA; Hogan DA
    Infect Immun; 2009 Mar; 77(3):1103-11. PubMed ID: 19103776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanolamine Catabolism in Pseudomonas aeruginosa PAO1 Is Regulated by the Enhancer-Binding Protein EatR (PA4021) and the Alternative Sigma Factor RpoN.
    Lundgren BR; Sarwar Z; Pinto A; Ganley JG; Nomura CT
    J Bacteriol; 2016 Sep; 198(17):2318-29. PubMed ID: 27325678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudomonas aeruginosa gbdR gene is transcribed from a σ54-dependent promoter under the control of NtrC/CbrB, IHF and BetI.
    Sánchez DG; Primo ED; Damiani MT; Lisa AT
    Microbiology (Reading); 2017 Sep; 163(9):1343-1354. PubMed ID: 28791946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of genes required for Pseudomonas aeruginosa carnitine catabolism.
    Wargo MJ; Hogan DA
    Microbiology (Reading); 2009 Jul; 155(Pt 7):2411-2419. PubMed ID: 19406895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional Regulation of Carnitine Catabolism in
    Meadows JA; Wargo MJ
    mSphere; 2018; 3(1):. PubMed ID: 29435492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Choline degradation in
    Parekh T; Tsai M; Spiro S
    J Bacteriol; 2024 Apr; 206(4):e0008124. PubMed ID: 38501746
    [No Abstract]   [Full Text] [Related]  

  • 11. Choline catabolism to glycine betaine contributes to Pseudomonas aeruginosa survival during murine lung infection.
    Wargo MJ
    PLoS One; 2013; 8(2):e56850. PubMed ID: 23457628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The CbrA-CbrB two-component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa.
    Nishijyo T; Haas D; Itoh Y
    Mol Microbiol; 2001 May; 40(4):917-31. PubMed ID: 11401699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The AraC-Type Transcriptional Regulator GliR (PA3027) Activates Genes of Glycerolipid Metabolism in
    Kotecka K; Kawalek A; Kobylecki K; Bartosik AA
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34064685
    [No Abstract]   [Full Text] [Related]  

  • 14. FleQ DNA Binding Consensus Sequence Revealed by Studies of FleQ-Dependent Regulation of Biofilm Gene Expression in Pseudomonas aeruginosa.
    Baraquet C; Harwood CS
    J Bacteriol; 2016 Jan; 198(1):178-86. PubMed ID: 26483521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GcsR, a TyrR-Like Enhancer-Binding Protein, Regulates Expression of the Glycine Cleavage System in Pseudomonas aeruginosa PAO1.
    Sarwar Z; Lundgren BR; Grassa MT; Wang MX; Gribble M; Moffat JF; Nomura CT
    mSphere; 2016; 1(2):. PubMed ID: 27303730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vfr Directly Activates exsA Transcription To Regulate Expression of the Pseudomonas aeruginosa Type III Secretion System.
    Marsden AE; Intile PJ; Schulmeyer KH; Simmons-Patterson ER; Urbanowski ML; Wolfgang MC; Yahr TL
    J Bacteriol; 2016 May; 198(9):1442-50. PubMed ID: 26929300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CysB Negatively Affects the Transcription of pqsR and Pseudomonas Quinolone Signal Production in Pseudomonas aeruginosa.
    Farrow JM; Hudson LL; Wells G; Coleman JP; Pesci EC
    J Bacteriol; 2015 Jun; 197(12):1988-2002. PubMed ID: 25845844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sox transcription in sarcosine utilization is controlled by Sigma(54) and SoxR in Bacillus thuringiensis HD73.
    Peng Q; Liu C; Wang B; Yang M; Wu J; Zhang J; Song F
    Sci Rep; 2016 Jul; 6():29141. PubMed ID: 27404799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of three transporters, CbcXWV, BetT1, and BetT3, in Pseudomonas aeruginosa choline uptake for catabolism.
    Malek AA; Chen C; Wargo MJ; Beattie GA; Hogan DA
    J Bacteriol; 2011 Jun; 193(12):3033-41. PubMed ID: 21478341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional genomics enables identification of genes of the arginine transaminase pathway in Pseudomonas aeruginosa.
    Yang Z; Lu CD
    J Bacteriol; 2007 Jun; 189(11):3945-53. PubMed ID: 17416670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.