These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26504215)

  • 1. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels.
    Singh MR; Clark EL; Bell AT
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):E6111-8. PubMed ID: 26504215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solar Panel Technologies for Light-to-Chemical Conversion.
    Andrei V; Wang Q; Uekert T; Bhattacharjee S; Reisner E
    Acc Chem Res; 2022 Dec; 55(23):3376-3386. PubMed ID: 36395337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructured Au Electrode with 100 h Stability for Solar-Driven Electrochemical Reduction of Carbon Dioxide to Carbon Monoxide.
    Bae H; Seong C; Burungale V; Seol M; Yoon CO; Kang SH; Jung WG; Kim BJ; Ha JS
    ACS Omega; 2022 Mar; 7(11):9422-9429. PubMed ID: 35350324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in heterogeneous catalysis of solar-driven carbon dioxide conversion.
    Xu J; Roghabadi FA; Luo Y; Ahmadi V; Wang Q; Wang Z; He H
    J Environ Sci (China); 2024 Jun; 140():165-182. PubMed ID: 38331498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical Efficiency Limits of Photoelectrochemical CO
    Kalamaras E; Wang H; Mercedes Maroto-Valer M; Andresen JM; Xuan J
    Chemphyschem; 2020 Feb; 21(3):232-239. PubMed ID: 31849184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unbiased Sunlight-Driven Artificial Photosynthesis of Carbon Monoxide from CO2 Using a ZnTe-Based Photocathode and a Perovskite Solar Cell in Tandem.
    Jang YJ; Jeong I; Lee J; Lee J; Ko MJ; Lee JS
    ACS Nano; 2016 Jul; 10(7):6980-7. PubMed ID: 27359299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves.
    Surendranath Y; Bediako DK; Nocera DG
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15617-21. PubMed ID: 22689962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis.
    Dogutan DK; Nocera DG
    Acc Chem Res; 2019 Nov; 52(11):3143-3148. PubMed ID: 31593438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide.
    Singh MR; Clark EL; Bell AT
    Phys Chem Chem Phys; 2015 Jul; 17(29):18924-36. PubMed ID: 26103939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Solar Thermal Electrochemical Process (STEP) for Carbon Neutral Products and High Value Nanocarbons.
    Ren J; Yu A; Peng P; Lefler M; Li FF; Licht S
    Acc Chem Res; 2019 Nov; 52(11):3177-3187. PubMed ID: 31697061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-cost high-efficiency system for solar-driven conversion of CO
    Huan TN; Dalla Corte DA; Lamaison S; Karapinar D; Lutz L; Menguy N; Foldyna M; Turren-Cruz SH; Hagfeldt A; Bella F; Fontecave M; Mougel V
    Proc Natl Acad Sci U S A; 2019 May; 116(20):9735-9740. PubMed ID: 30918130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex.
    Thoi VS; Kornienko N; Margarit CG; Yang P; Chang CJ
    J Am Chem Soc; 2013 Sep; 135(38):14413-24. PubMed ID: 24033186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient solar fuel production with a high-pressure CO
    Deng K; Zhang Y; Feng H; Liu N; Ma L; Duan J; Wang Y; Liu D; Li Q
    Sci Bull (Beijing); 2022 Jul; 67(14):1467-1476. PubMed ID: 36546190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic Semiconductor-BiVO
    Yeung CWS; Andrei V; Lee TH; Durrant JR; Reisner E
    Adv Mater; 2024 Aug; 36(35):e2404110. PubMed ID: 38943473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold-like activity copper-like selectivity of heteroatomic transition metal carbides for electrocatalytic carbon dioxide reduction reaction.
    Esmaeilirad M; Baskin A; Kondori A; Sanz-Matias A; Qian J; Song B; Tamadoni Saray M; Kucuk K; Belmonte AR; Delgado PNM; Park J; Azari R; Segre CU; Shahbazian-Yassar R; Prendergast D; Asadi M
    Nat Commun; 2021 Aug; 12(1):5067. PubMed ID: 34417447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Achieving Simultaneous CO
    Ma W; Wang H; Yu W; Wang X; Xu Z; Zong X; Li C
    Angew Chem Int Ed Engl; 2018 Mar; 57(13):3473-3477. PubMed ID: 29411479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward high-efficiency photovoltaics-assisted electrochemical and photoelectrochemical CO
    Cho JH; Ma J; Kim SY
    Exploration (Beijing); 2023 Oct; 3(5):20230001. PubMed ID: 37933280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials.
    Tatin A; Comminges C; Kokoh B; Costentin C; Robert M; Savéant JM
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5526-9. PubMed ID: 27140621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrocatalytic Reduction of Nitrogen and Carbon Dioxide to Chemical Fuels: Challenges and Opportunities for a Solar Fuel Device.
    Fenwick AQ; Gregoire JM; Luca OR
    J Photochem Photobiol B; 2015 Nov; 152(Pt A):47-57. PubMed ID: 25596654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.