BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26504486)

  • 1. Identifying New Candidate Genes and Chemicals Related to Prostate Cancer Using a Hybrid Network and Shortest Path Approach.
    Yuan F; Zhou Y; Wang M; Yang J; Wu K; Lu C; Kong X; Cai YD
    Comput Math Methods Med; 2015; 2015():462363. PubMed ID: 26504486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mining for novel tumor suppressor genes using a shortest path approach.
    Chen L; Yang J; Huang T; Kong X; Lu L; Cai YD
    J Biomol Struct Dyn; 2016; 34(3):664-75. PubMed ID: 26209080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mining for Candidate Genes Related to Pancreatic Cancer Using Protein-Protein Interactions and a Shortest Path Approach.
    Yuan F; Zhang YH; Wan S; Wang S; Kong XY
    Biomed Res Int; 2015; 2015():623121. PubMed ID: 26613085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of New Candidate Genes and Chemicals Related to Esophageal Cancer Using a Hybrid Interaction Network of Chemicals and Proteins.
    Gao YF; Yuan F; Liu J; Li LP; He YC; Gao RJ; Cai YD; Jiang Y
    PLoS One; 2015; 10(6):e0129474. PubMed ID: 26058041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global risk transformative prioritization for prostate cancer candidate genes in molecular networks.
    Chen L; Tai J; Zhang L; Shang Y; Li X; Qu X; Li W; Miao Z; Jia X; Wang H; Li W; He W
    Mol Biosyst; 2011 Sep; 7(9):2547-53. PubMed ID: 21735017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathway crosstalk analysis based on protein-protein network analysis in prostate cancer.
    Wang JM; Wu JT; Sun DK; Zhang P; Wang L
    Eur Rev Med Pharmacol Sci; 2012 Sep; 16(9):1235-42. PubMed ID: 23047508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational identification of surrogate genes for prostate cancer phases using machine learning and molecular network analysis.
    Li R; Dong X; Ma C; Liu L
    Theor Biol Med Model; 2014 Aug; 11():37. PubMed ID: 25151146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prioritization of potential candidate disease genes by topological similarity of protein-protein interaction network and phenotype data.
    Luo J; Liang S
    J Biomed Inform; 2015 Feb; 53():229-36. PubMed ID: 25460206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mining featured biomarkers associated with prostatic carcinoma based on bioinformatics.
    Piao G; Wu J
    Biomarkers; 2013 Nov; 18(7):580-6. PubMed ID: 23957850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A network biology approach to prostate cancer.
    Ergün A; Lawrence CA; Kohanski MA; Brennan TA; Collins JJ
    Mol Syst Biol; 2007; 3():82. PubMed ID: 17299418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network.
    Wang B; Yuan F; Kong X; Hu LD; Cai YD
    Comput Math Methods Med; 2015; 2015():715639. PubMed ID: 26543496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-platform method for identifying candidate network biomarkers for prostate cancer.
    Jin G; Zhou X; Cui K; Zhang XS; Chen L; Wong ST
    IET Syst Biol; 2009 Nov; 3(6):505-12. PubMed ID: 19947776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network-based approach reveals Y chromosome influences prostate cancer susceptibility.
    Khosravi P; Gazestani VH; Asgari Y; Law B; Sadeghi M; Goliaei B
    Comput Biol Med; 2014 Nov; 54():24-31. PubMed ID: 25199846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative gene network construction for predicting a set of complementary prostate cancer genes.
    Ahn J; Yoon Y; Park C; Shin E; Park S
    Bioinformatics; 2011 Jul; 27(13):1846-53. PubMed ID: 21551151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oncogenes and tumor suppressor genes: comparative genomics and network perspectives.
    Zhu K; Liu Q; Zhou Y; Tao C; Zhao Z; Sun J; Xu H
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S8. PubMed ID: 26099335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomarker identification for prostate cancer and lymph node metastasis from microarray data and protein interaction network using gene prioritization method.
    Arias CR; Yeh HY; Soo VW
    ScientificWorldJournal; 2012; 2012():842727. PubMed ID: 22654636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational bioinformatics analysis of gene expression identifies candidate agents for prostate cancer.
    Wen DY; Geng J; Li W; Guo CC; Zheng JH
    Andrologia; 2014 Aug; 46(6):625-32. PubMed ID: 23790256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring Drug Treatment Patterns Based on the Action of Drug and Multilayer Network Model.
    Yu L; Shi Y; Zou Q; Wang S; Zheng L; Gao L
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32708644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Genetic aspects in cancers of the prostate].
    Cussenot O; Valeri A; Meria P; Berthon P; Fournier G; Teillac P; Mangin ; Le Duc A
    Pathol Biol (Paris); 1996 Oct; 44(8):737-43. PubMed ID: 8977935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of a lncRNA-PCG bipartite network and identification of cancer-related lncRNAs: a case study in prostate cancer.
    Liu Y; Zhang R; Qiu F; Li K; Zhou Y; Shang D; Xu Y
    Mol Biosyst; 2015 Feb; 11(2):384-93. PubMed ID: 25385343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.