These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 26504530)
61. Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties. Saladié M; Cañizares J; Phillips MA; Rodriguez-Concepcion M; Larrigaudière C; Gibon Y; Stitt M; Lunn JE; Garcia-Mas J BMC Genomics; 2015 Jun; 16(1):440. PubMed ID: 26054931 [TBL] [Abstract][Full Text] [Related]
62. Gene expression in the pulp of ripening bananas. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products and cDNA cloning of 25 different ripening-related mRNAs. Medina-Suárez R; Manning K; Fletcher J; Aked J; Bird CR; Seymour GB Plant Physiol; 1997 Oct; 115(2):453-61. PubMed ID: 9342865 [TBL] [Abstract][Full Text] [Related]
63. Ribonuclease inhibitors in Malus x domestica (common apple): isolation and partial characterization. Kosuge T; Isemura M; Takahashi Y; Odani S; Odani S Biosci Biotechnol Biochem; 2003 Apr; 67(4):698-703. PubMed ID: 12784607 [TBL] [Abstract][Full Text] [Related]
64. Proteomic Analysis of Differentially Expressed Proteins Involved in Peel Senescence in Harvested Mandarin Fruit. Li T; Zhang J; Zhu H; Qu H; You S; Duan X; Jiang Y Front Plant Sci; 2016; 7():725. PubMed ID: 27303420 [TBL] [Abstract][Full Text] [Related]
65. Apple fruit recovery from anoxia under controlled atmosphere storage. Wood RM; Thewes FR; Reynaud M; Kittemann D; Sautter CK; Wünsche JN; Neuwald DA Food Chem; 2022 Mar; 371():131152. PubMed ID: 34583177 [TBL] [Abstract][Full Text] [Related]
66. Erratum: Dynamic Changes in Proteins during Apple (Malus x domestica) Fruit Ripening and Storage. Shi Y; Jiang L; Zhang L; Kang R; Yu Z Hortic Res; 2014; 1():14. PubMed ID: 26506611 [TBL] [Abstract][Full Text] [Related]
67. Screening and identification of resistance related proteins from apple leaves inoculated with Marssonina coronaria (EII. & J. J. Davis). Li M; Xu J; Qiu Z; Zhang J; Ma F; Zhang J Proteome Sci; 2014 Feb; 12(1):7. PubMed ID: 24507458 [TBL] [Abstract][Full Text] [Related]
68. Microsomal Membrane Changes during the Ripening of Apple Fruit. Lurie S; Ben-Arie R Plant Physiol; 1983 Nov; 73(3):636-8. PubMed ID: 16663272 [TBL] [Abstract][Full Text] [Related]
69. Ontogenetic changes in respiratory pathways in cortland apple skin during storage. Faust M; Chase BR; Massey LM Plant Physiol; 1966 Dec; 41(10):1610-4. PubMed ID: 16656447 [TBL] [Abstract][Full Text] [Related]
70. Sequence of a cDNA coding for a 1-aminocyclopropane-1-carboxylate oxidase homolog from apple fruit. Dong JG; Olson D; Silverstone A; Yang SF Plant Physiol; 1992 Apr; 98(4):1530-1. PubMed ID: 16668829 [No Abstract] [Full Text] [Related]
71. Editorial: Rosaceae Fruit Development and Quality. Kang C; Yao JL; Liu Z; Han Y Front Plant Sci; 2021; 12():837300. PubMed ID: 35126442 [No Abstract] [Full Text] [Related]
72. Changes in the proteomics and metabolomics profiles of Cormus Domestica (L.) fruits during the ripening process. Tartaglia M; Zuzolo D; Prigioniero A; Ranauda MA; Scarano P; Tienda-Parrilla M; Hernandez-Lao T; Jorrín-Novo J; Guarino C BMC Plant Biol; 2024 Oct; 24(1):945. PubMed ID: 39390371 [TBL] [Abstract][Full Text] [Related]
73. Identification of allergenomic signatures in allergic and well-tolerated apple genotypes using LC-MS/MS. Chebib S; Meng C; Ludwig C; Bergmann KC; Becker S; Dierend W; Schwab W Food Chem (Oxf); 2022 Jul; 4():100111. PubMed ID: 35592704 [TBL] [Abstract][Full Text] [Related]
75. The Fruit Proteome Response to the Ripening Stages in Three Tomato Genotypes. Choi HG; Park DY; Kang NJ Plants (Basel); 2022 Feb; 11(4):. PubMed ID: 35214885 [TBL] [Abstract][Full Text] [Related]
76. MLP-PG1, a major latex-like protein identified in Cucurbita pepo, confers resistance through the induction of pathogenesis-related genes. Fujita K; Asuke S; Isono E; Yoshihara R; Uno Y; Inui H Planta; 2021 Nov; 255(1):10. PubMed ID: 34850294 [TBL] [Abstract][Full Text] [Related]
77. Non-destructive methods for fruit quality evaluation. Bratu AM; Popa C; Bojan M; Logofatu PC; Petrus M Sci Rep; 2021 Apr; 11(1):7782. PubMed ID: 33833395 [TBL] [Abstract][Full Text] [Related]
78. Unraveling Interactions of the Necrotrophic Fungal Species Testempasis S; Tanou G; Minas I; Samiotaki M; Molassiotis A; Karaoglanidis G Front Plant Sci; 2021; 12():644255. PubMed ID: 33777080 [TBL] [Abstract][Full Text] [Related]
79. Investigations of changes in the arabinogalactan proteins (AGPs) structure, size and composition during the fruit ripening process. Leszczuk A; Zając A; Kurzyna-Szklarek M; Cybulska J; Zdunek A Sci Rep; 2020 Nov; 10(1):20621. PubMed ID: 33244134 [TBL] [Abstract][Full Text] [Related]
80. Identification of Candidate Genes Involved in Fruit Ripening and Crispness Retention Through Transcriptome Analyses of a 'Honeycrisp' Population. Chang HY; Tong CBS Plants (Basel); 2020 Oct; 9(10):. PubMed ID: 33050481 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]