BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 26504568)

  • 1. Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia.
    Estrada-Melo AC; Chao ; Reid MS; Jiang CZ
    Hortic Res; 2015; 2():15013. PubMed ID: 26504568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of 9-
    He R; Zhuang Y; Cai Y; Agüero CB; Liu S; Wu J; Deng S; Walker MA; Lu J; Zhang Y
    Front Plant Sci; 2018; 9():970. PubMed ID: 30123225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential of proline as a key metabolite to design real-time plant water deficit and low-light stress detector in ornamental plants.
    Kittipornkul P; Treesubsuntorn C; Kobthong S; Yingchutrakul Y; Julpanwattana P; Thiravetyan P
    Environ Sci Pollut Res Int; 2024 May; 31(25):36152-36162. PubMed ID: 37284956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of overexpression of citrus 9-cis-epoxycarotenoid dioxygenase 3 (CsNCED3) on the physiological response to drought stress in transgenic tobacco.
    Pedrosa AM; Cidade LC; Martins CP; Macedo AF; Neves DM; Gomes FP; Floh EI; Costa MG
    Genet Mol Res; 2017 Mar; 16(1):. PubMed ID: 28362996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis.
    Huang Q; Wang Y; Li B; Chang J; Chen M; Li K; Yang G; He G
    BMC Plant Biol; 2015 Nov; 15():268. PubMed ID: 26536863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence.
    Takasaki H; Maruyama K; Takahashi F; Fujita M; Yoshida T; Nakashima K; Myouga F; Toyooka K; Yamaguchi-Shinozaki K; Shinozaki K
    Plant J; 2015 Dec; 84(6):1114-23. PubMed ID: 26518251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of ABCG-type ABC transporters in phytohormone transport.
    Borghi L; Kang J; Ko D; Lee Y; Martinoia E
    Biochem Soc Trans; 2015 Oct; 43(5):924-30. PubMed ID: 26517905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana.
    Wang Y; Yang L; Chen X; Ye T; Zhong B; Liu R; Wu Y; Chan Z
    J Exp Bot; 2016 Jan; 67(1):421-34. PubMed ID: 26512059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water Stress Responses of Tomato Mutants Impaired in Hormone Biosynthesis Reveal Abscisic Acid, Jasmonic Acid and Salicylic Acid Interactions.
    Muñoz-Espinoza VA; López-Climent MF; Casaretto JA; Gómez-Cadenas A
    Front Plant Sci; 2015; 6():997. PubMed ID: 26635826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decrypting Molecular Mechanisms Involved in Counteracting Copper and Nickel Toxicity in Jack Pine (
    Moy A; Nkongolo K
    Plants (Basel); 2024 Apr; 13(7):. PubMed ID: 38611570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a sugarcane bacilliform virus promoter that is activated by drought stress in plants.
    Sun SR; Wu XB; Chen JS; Huang MT; Fu HY; Wang QN; Rott P; Gao SJ
    Commun Biol; 2024 Mar; 7(1):368. PubMed ID: 38532083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9: an advanced platform for root and tuber crops improvement.
    Divya K; Thangaraj M; Krishna Radhika N
    Front Genome Ed; 2023; 5():1242510. PubMed ID: 38312197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abscisic acid-induced transcription factor PsMYB306 negatively regulates tree peony bud dormancy release.
    Yuan Y; Zeng L; Kong D; Mao Y; Xu Y; Wang M; Zhao Y; Jiang CZ; Zhang Y; Sun D
    Plant Physiol; 2024 Mar; 194(4):2449-2471. PubMed ID: 38206196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of genes associated with abiotic stress tolerance in sweetpotato using weighted gene co-expression network analysis.
    Kitavi M; Gemenet DC; Wood JC; Hamilton JP; Wu S; Fei Z; Khan A; Buell CR
    Plant Direct; 2023 Oct; 7(10):e532. PubMed ID: 37794882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mulberry 9-
    Zhu P; Li R; Fan W; Xia Z; Li J; Wang C; Zhao A
    Front Plant Sci; 2023; 14():1228902. PubMed ID: 37575921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modifications of Phytohormone Metabolism Aimed at Stimulation of Plant Growth, Improving Their Productivity and Tolerance to Abiotic and Biotic Stress Factors.
    Nowicka B
    Plants (Basel); 2022 Dec; 11(24):. PubMed ID: 36559545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The characterization and expression analysis under stress conditions of
    Zhang H; Zhang K; Liu T; Zhang Y; Tang Z; Dong J; Wang F
    Plant Signal Behav; 2022 Dec; 17(1):2134675. PubMed ID: 36281762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cold-inducible promoter-driven knockdown of
    Juurakko CL; Bredow M; diCenzo GC; Walker VK
    Plant Direct; 2022 Sep; 6(9):e449. PubMed ID: 36172079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abscisic acid-polyacrylamide (ABA-PAM) treatment enhances forage grass growth and soil microbial diversity under drought stress.
    Tang X; Fei X; Sun Y; Shao H; Zhu J; He X; Wang X; Yong B; Tao X
    Front Plant Sci; 2022; 13():973665. PubMed ID: 36119590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression Profile of Sorghum Genes and
    Lee S; Jeon D; Choi S; Kang Y; Seo S; Kwon S; Lyu J; Ahn J; Seo J; Kim C
    Plants (Basel); 2022 Mar; 11(7):. PubMed ID: 35406848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.