These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 26504580)

  • 1. Ethylene resistance in flowering ornamental plants - improvements and future perspectives.
    Olsen A; Lütken H; Hegelund JN; Müller R
    Hortic Res; 2015; 2():15038. PubMed ID: 26504580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome engineering in ornamental plants: Current status and future prospects.
    Kishi-Kaboshi M; Aida R; Sasaki K
    Plant Physiol Biochem; 2018 Oct; 131():47-52. PubMed ID: 29709514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylene: Management and breeding for postharvest quality in vegetable crops. A review.
    Cocetta G; Natalini A
    Front Plant Sci; 2022; 13():968315. PubMed ID: 36452083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic engineering and sustainable production of ornamentals: current status and future directions.
    Lütken H; Clarke JL; Müller R
    Plant Cell Rep; 2012 Jul; 31(7):1141-57. PubMed ID: 22527196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Progress in Enhancing Fungal Disease Resistance in Ornamental Plants.
    Mekapogu M; Jung JA; Kwon OK; Ahn MS; Song HY; Jang S
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress and Challenges in the Improvement of Ornamental Plants by Genome Editing.
    Ahn CH; Ramya M; An HR; Park PM; Kim YJ; Lee SY; Jang S
    Plants (Basel); 2020 May; 9(6):. PubMed ID: 32481726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creating novel ornamentals
    Jin C; Dong L; Wei C; Wani MA; Yang C; Li S; Li F
    Front Plant Sci; 2023; 14():1142866. PubMed ID: 37123857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current insights and advances into plant male sterility: new precision breeding technology based on genome editing applications.
    Farinati S; Draga S; Betto A; Palumbo F; Vannozzi A; Lucchin M; Barcaccia G
    Front Plant Sci; 2023; 14():1223861. PubMed ID: 37521915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant breeding advancements with "CRISPR-Cas" genome editing technologies will assist future food security.
    Ahmad M
    Front Plant Sci; 2023; 14():1133036. PubMed ID: 36993865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotechnological approaches to breeding and cultivation of ornamental crop plants.
    Khayat E
    Biotechnol Adv; 1990; 8(2):347-57. PubMed ID: 14546642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of Salt Tolerance and Molecular Breeding of Salt-Tolerant Ornamental Plants.
    Guo J; Shan C; Zhang Y; Wang X; Tian H; Han G; Zhang Y; Wang B
    Front Plant Sci; 2022; 13():854116. PubMed ID: 35574092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genes and genome editing tools for breeding desirable phenotypes in ornamentals.
    Giovannini A; Laura M; Nesi B; Savona M; Cardi T
    Plant Cell Rep; 2021 Mar; 40(3):461-478. PubMed ID: 33388891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perspectives on the Application of Genome-Editing Technologies in Crop Breeding.
    Hua K; Zhang J; Botella JR; Ma C; Kong F; Liu B; Zhu JK
    Mol Plant; 2019 Aug; 12(8):1047-1059. PubMed ID: 31260812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome editing for crop improvement: Challenges and opportunities.
    Abdallah NA; Prakash CS; McHughen AG
    GM Crops Food; 2015; 6(4):183-205. PubMed ID: 26930114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Transgenesis to Genome Editing in Crop Improvement: Applications, Marketing, and Legal Issues.
    Marone D; Mastrangelo AM; Borrelli GM
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic Engineering and Genome Editing Advances to Enhance Floral Attributes in Ornamental Plants: An Update.
    Mekapogu M; Song HY; Lim SH; Jung JA
    Plants (Basel); 2023 Nov; 12(23):. PubMed ID: 38068619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas genome editing in plants: Dawn of Agrobacterium transformation for recalcitrant and transgene-free plants for future crop breeding.
    Antony Ceasar S; Ignacimuthu S
    Plant Physiol Biochem; 2023 Mar; 196():724-730. PubMed ID: 36812799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State of the Art of Genetic Engineering in Potato: From the First Report to Its Future Potential.
    Nahirñak V; Almasia NI; González MN; Massa GA; Décima Oneto CA; Feingold SE; Hopp HE; Vazquez Rovere C
    Front Plant Sci; 2021; 12():768233. PubMed ID: 35082806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome editing in fruit, ornamental, and industrial crops.
    Ramirez-Torres F; Ghogare R; Stowe E; Cerdá-Bennasser P; Lobato-Gómez M; Williamson-Benavides BA; Giron-Calva PS; Hewitt S; Christou P; Dhingra A
    Transgenic Res; 2021 Aug; 30(4):499-528. PubMed ID: 33825100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.