These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26504634)

  • 1. Image restoration for three-dimensional fluorescence microscopy using an orthonormal basis for efficient representation of depth-variant point-spread functions.
    Patwary N; Preza C
    Biomed Opt Express; 2015 Oct; 6(10):3826-41. PubMed ID: 26504634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional block-based restoration integrated with wide-field fluorescence microscopy for the investigation of thick specimens with spatially variant refractive index.
    Ghosh S; Preza C
    J Biomed Opt; 2016 Apr; 21(4):46010. PubMed ID: 27121642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Parallel Product-Convolution approach for representing the depth varying Point Spread Functions in 3D widefield microscopy based on principal component analysis.
    Arigovindan M; Shaevitz J; McGowan J; Sedat JW; Agard DA
    Opt Express; 2010 Mar; 18(7):6461-76. PubMed ID: 20389670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence microscopy point spread function model accounting for aberrations due to refractive index variability within a specimen.
    Ghosh S; Preza C
    J Biomed Opt; 2015 Jul; 20(7):75003. PubMed ID: 26154937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing effects of aberration in 3D fluorescence imaging using wavefront coding with a radially symmetric phase mask.
    Patwary N; King SV; Saavedra G; Preza C
    Opt Express; 2016 Jun; 24(12):12905-21. PubMed ID: 27410310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental validation of a customized phase mask designed to enable efficient computational optical sectioning microscopy through wavefront encoding.
    Patwary N; Shabani H; Doblas A; Saavedra G; Preza C
    Appl Opt; 2017 Mar; 56(9):D14-D23. PubMed ID: 28375383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blind Depth-variant Deconvolution of 3D Data in Wide-field Fluorescence Microscopy.
    Kim B; Naemura T
    Sci Rep; 2015 May; 5():9894. PubMed ID: 25950821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noise suppression of point spread functions and its influence on deconvolution of three-dimensional fluorescence microscopy image sets.
    Lai X; Lin Z; Ward ES; Ober RJ
    J Microsc; 2005 Jan; 217(Pt 1):93-108. PubMed ID: 15655067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy.
    Preza C; Conchello JA
    J Opt Soc Am A Opt Image Sci Vis; 2004 Sep; 21(9):1593-601. PubMed ID: 15384425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal PSF Estimation for Simple Optical System Using a Wide-Band Sensor Based on PSF Measurement.
    Zheng Y; Huang W; Pan Y; Xu M
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30347760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a three-dimensional double-helix point-spread function for fluorescence microscopy in the presence of spherical aberration.
    Ghosh S; Preza C
    J Biomed Opt; 2013 Mar; 18(3):036010. PubMed ID: 23515865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depth-variant deconvolution of 3D widefield fluorescence microscopy using the penalized maximum likelihood estimation method.
    Kim J; An S; Ahn S; Kim B
    Opt Express; 2013 Nov; 21(23):27668-81. PubMed ID: 24514285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance evaluation of extended depth of field microscopy in the presence of spherical aberration and noise.
    King SV; Yuan S; Preza C
    J Biomed Opt; 2018 Mar; 23(3):1-15. PubMed ID: 29600602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast processing of microscopic images using object-based extended depth of field.
    Intarapanich A; Kaewkamnerd S; Pannarut M; Shaw PJ; Tongsima S
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):516. PubMed ID: 28155648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-retrieved pupil functions in wide-field fluorescence microscopy.
    Hanser BM; Gustafsson MG; Agard DA; Sedat JW
    J Microsc; 2004 Oct; 216(Pt 1):32-48. PubMed ID: 15369481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling Point Spread Function in Fluorescence Microscopy With a Sparse Gaussian Mixture: Tradeoff Between Accuracy and Efficiency.
    Samuylov DK; Purwar P; Szekely G; Paul G
    IEEE Trans Image Process; 2019 Aug; 28(8):3688-3702. PubMed ID: 30762548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A High Resolution Color Image Restoration Algorithm for Thin TOMBO Imaging Systems.
    El-Sallam AA; Boussaid F
    Sensors (Basel); 2009; 9(6):4649-68. PubMed ID: 22408547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Point-spread function engineering to reduce the impact of spherical aberration on 3D computational fluorescence microscopy imaging.
    Yuan S; Preza C
    Opt Express; 2011 Nov; 19(23):23298-314. PubMed ID: 22109208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image restoration in computed tomography: restoration of experimental CT images.
    Rathee S; Koles ZJ; Overton TR
    IEEE Trans Med Imaging; 1992; 11(4):546-53. PubMed ID: 18222896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An effective method to verify line and point spread functions measured in computed tomography.
    Ohkubo M; Wada S; Matsumoto T; Nishizawa K
    Med Phys; 2006 Aug; 33(8):2757-64. PubMed ID: 16964851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.