These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 26504643)
21. Ex vivo visualization of human ciliated epithelium and quantitative analysis of induced flow dynamics by using optical coherence tomography. Ling Y; Yao X; Gamm UA; Arteaga-Solis E; Emala CW; Choma MA; Hendon CP Lasers Surg Med; 2017 Mar; 49(3):270-279. PubMed ID: 28231402 [TBL] [Abstract][Full Text] [Related]
22. Three-dimensional optic nerve head images using optical coherence tomography with a broad bandwidth, femtosecond, and mode-locked laser. Shoji T; Kuroda H; Suzuki M; Baba M; Araie M; Yoneya S Graefes Arch Clin Exp Ophthalmol; 2015 Feb; 253(2):313-21. PubMed ID: 25500984 [TBL] [Abstract][Full Text] [Related]
23. Dose-dependent retinal changes following sodium iodate administration: application of spectral-domain optical coherence tomography for monitoring of retinal injury and endogenous regeneration. Machalińska A; Lejkowska R; Duchnik M; Kawa M; Rogińska D; Wiszniewska B; Machaliński B Curr Eye Res; 2014 Oct; 39(10):1033-41. PubMed ID: 24661221 [TBL] [Abstract][Full Text] [Related]
26. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Nassif N; Cense B; Park BH; Yun SH; Chen TC; Bouma BE; Tearney GJ; de Boer JF Opt Lett; 2004 Mar; 29(5):480-2. PubMed ID: 15005199 [TBL] [Abstract][Full Text] [Related]
27. Nondestructive and high-resolution monitoring of inflammation-type skull defects regeneration on adult zebrafish with optical coherence tomography. Gao W; Zhang Y; Zhang Y; Yuan Z; Chen K; Xie W; Li D; Zhang J; Zhang L J Biophotonics; 2024 Jan; 17(1):e202300268. PubMed ID: 37710141 [TBL] [Abstract][Full Text] [Related]
28. Akinetic swept-source optical coherence tomography based on a pulse-modulated active mode locking fiber laser for human retinal imaging. Lee HD; Kim GH; Shin JG; Lee B; Kim CS; Eom TJ Sci Rep; 2018 Dec; 8(1):17660. PubMed ID: 30518926 [TBL] [Abstract][Full Text] [Related]
29. Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye. Makita S; Fabritius T; Yasuno Y Opt Express; 2008 Jun; 16(12):8406-20. PubMed ID: 18545554 [TBL] [Abstract][Full Text] [Related]
30. Imaging of the Lamina Cribrosa using Swept-Source Optical Coherence Tomography. Nuyen B; Mansouri K; N Weinreb R J Curr Glaucoma Pract; 2012; 6(3):113-9. PubMed ID: 26997766 [TBL] [Abstract][Full Text] [Related]
31. Sensitivity and specificity of time-domain and spectral-domain optical coherence tomography in differentiating optic nerve head drusen and optic disc oedema. Flores-Rodríguez P; Gili P; Martín-Ríos MD Ophthalmic Physiol Opt; 2012 May; 32(3):213-21. PubMed ID: 22428958 [TBL] [Abstract][Full Text] [Related]
32. Predicted and measured retinal nerve fiber layer thickness from time-domain optical coherence tomography compared with spectral-domain optical coherence tomography. Schrems WA; Schrems-Hoesl LM; Bendschneider D; Mardin CY; Laemmer R; Kruse FE; Horn FK JAMA Ophthalmol; 2015 Oct; 133(10):1135-43. PubMed ID: 26225533 [TBL] [Abstract][Full Text] [Related]
33. In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography. Ruggeri M; Wehbe H; Jiao S; Gregori G; Jockovich ME; Hackam A; Duan Y; Puliafito CA Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1808-14. PubMed ID: 17389515 [TBL] [Abstract][Full Text] [Related]
34. Structural and optical characterization of banknotes using spectral-domain optical coherence tomography. Wang L; Wu D; Yv S; Wang C; Guang X; Shi G; Yan Y; Xie L; Huang W; Li Z; Gao S; Zhang N J Forensic Sci; 2022 Sep; 67(5):2073-2081. PubMed ID: 35769026 [TBL] [Abstract][Full Text] [Related]
37. Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications. Xu J; Wei W; Song S; Qi X; Wang RK Biomed Opt Express; 2016 May; 7(5):1905-19. PubMed ID: 27231630 [TBL] [Abstract][Full Text] [Related]
38. Comparison of optic area measurement using fundus photography and optical coherence tomography between optic nerve head drusen and control subjects. Flores-Rodríguez P; Gili P; Martín-Ríos MD; Grifol-Clar E Ophthalmic Physiol Opt; 2013 Mar; 33(2):164-71. PubMed ID: 23311663 [TBL] [Abstract][Full Text] [Related]
39. In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients. Wong BJ; Jackson RP; Guo S; Ridgway JM; Mahmood U; Su J; Shibuya TY; Crumley RL; Gu M; Armstrong WB; Chen Z Laryngoscope; 2005 Nov; 115(11):1904-11. PubMed ID: 16319597 [TBL] [Abstract][Full Text] [Related]
40. Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography. Hong Y; Makita S; Yamanari M; Miura M; Kim S; Yatagai T; Yasuno Y Opt Express; 2007 Jun; 15(12):7538-50. PubMed ID: 19547079 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]