These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 26504647)

  • 1. Limitations of the commonly used simplified laterally uniform optical fiber probe-tissue interface in Monte Carlo simulations of diffuse reflectance.
    Naglič P; Pernuš F; Likar B; Bürmen M
    Biomed Opt Express; 2015 Oct; 6(10):3973-88. PubMed ID: 26504647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast and accurate Monte Carlo simulations of subdiffusive spatially resolved reflectance for a realistic optical fiber probe tip model aided by a deep neural network.
    Zelinskyi Y; Naglič P; Pernuš F; Likar B; Bürmen M
    Biomed Opt Express; 2020 Jul; 11(7):3875-3889. PubMed ID: 33014572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated fiber-optic probe combined with support vector regression for fast estimation of optical properties of turbid media.
    Zhou Y; Fu X; Ying Y; Fang Z
    Anal Chim Acta; 2015 Jun; 880():122-9. PubMed ID: 26092344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-contact optical spectroscopy for tumor-sensitive diffuse reflectance and fluorescence measurements on murine subcutaneous tissue models: Monte Carlo modeling and experimental validations.
    Hasan MZ; Saha PS; Korfhage MO; Zhu C
    Biomed Opt Express; 2023 Oct; 14(10):5418-5439. PubMed ID: 37854556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q; Zhu C; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling diffuse reflectance from homogeneous semi-infinite turbid media for biological tissue applications: a Monte Carlo study.
    Zonios G; Dimou A
    Biomed Opt Express; 2011 Dec; 2(12):3284-94. PubMed ID: 22162819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.
    Liu Q; Ramanujam N
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1011-25. PubMed ID: 17361287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.
    Nagarajan VK; Yu B
    Lasers Surg Med; 2016 Sep; 48(7):686-94. PubMed ID: 27250022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media.
    Sharma D; Agrawal A; Matchette LS; Pfefer TJ
    Biomed Eng Online; 2006 Aug; 5():49. PubMed ID: 16928274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the propagation of light in realistic tissue structures with MMC-fpf: a meshed Monte Carlo method with free phase function.
    Watté R; Aernouts B; Van Beers R; Herremans E; Ho QT; Verboven P; Nicolaï B; Saeys W
    Opt Express; 2015 Jun; 23(13):17467-86. PubMed ID: 26191756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fiber-Optic Pedicle Probes to Advance Spine Surgery through Diffuse Reflectance Spectroscopy.
    Losch MS; Heintz JD; Edström E; Elmi-Terander A; Dankelman J; Hendriks BHW
    Bioengineering (Basel); 2024 Jan; 11(1):. PubMed ID: 38247938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validity of the semi-infinite tumor model in diffuse reflectance spectroscopy for epithelial cancer diagnosis: a Monte Carlo study.
    Zhu C; Liu Q
    Opt Express; 2011 Aug; 19(18):17799-812. PubMed ID: 21935148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element modeling of light propagation in turbid media under illumination of a continuous-wave beam.
    Wang A; Lu R; Xie L
    Appl Opt; 2016 Jan; 55(1):95-103. PubMed ID: 26835627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband ultraviolet-visible optical property measurement in layered turbid media.
    Wang Q; Le D; Ramella-Roman J; Pfefer J
    Biomed Opt Express; 2012 Jun; 3(6):1226-40. PubMed ID: 22741070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media.
    Wang L; Jacques SL
    J Opt Soc Am A Opt Image Sci Vis; 1993 Aug; 10(8):1746-52. PubMed ID: 8350159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo.
    Farrell TJ; Patterson MS; Wilson B
    Med Phys; 1992; 19(4):879-88. PubMed ID: 1518476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light distribution modulated diffuse reflectance spectroscopy.
    Huang PY; Chien CY; Sheu CR; Chen YW; Tseng SH
    Biomed Opt Express; 2016 Jun; 7(6):2118-29. PubMed ID: 27375931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study on the Determination System of Tissue Optical Properties Based on Diffuse Reflectance Spectrum].
    Li CX; Sun Z; Han L; Zhao HJ; Xu KX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 May; 36(5):1532-6. PubMed ID: 30001058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry.
    Lin SP; Wang L; Jacques SL; Tittel FK
    Appl Opt; 1997 Jan; 36(1):136-43. PubMed ID: 18250654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra.
    Liu Q; Ramanujam N
    Appl Opt; 2006 Jul; 45(19):4776-90. PubMed ID: 16799693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.