These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 26504783)
21. Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Melero-Martin JM; De Obaldia ME; Kang SY; Khan ZA; Yuan L; Oettgen P; Bischoff J Circ Res; 2008 Jul; 103(2):194-202. PubMed ID: 18556575 [TBL] [Abstract][Full Text] [Related]
22. The influence of heart valve leaflet matrix characteristics on the interaction between human mesenchymal stem cells and decellularized scaffolds. Iop L; Renier V; Naso F; Piccoli M; Bonetti A; Gandaglia A; Pozzobon M; Paolin A; Ortolani F; Marchini M; Spina M; De Coppi P; Sartore S; Gerosa G Biomaterials; 2009 Sep; 30(25):4104-16. PubMed ID: 19481252 [TBL] [Abstract][Full Text] [Related]
24. Differentiation of adipose-derived stem cells into contractile smooth muscle cells induced by transforming growth factor-beta1 and bone morphogenetic protein-4. Wang C; Yin S; Cen L; Liu Q; Liu W; Cao Y; Cui L Tissue Eng Part A; 2010 Apr; 16(4):1201-13. PubMed ID: 19895205 [TBL] [Abstract][Full Text] [Related]
25. A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells. Wang C; Cen L; Yin S; Liu Q; Liu W; Cao Y; Cui L Biomaterials; 2010 Feb; 31(4):621-30. PubMed ID: 19819545 [TBL] [Abstract][Full Text] [Related]
26. Living autologous heart valves engineered from human prenatally harvested progenitors. Schmidt D; Mol A; Breymann C; Achermann J; Odermatt B; Gössi M; Neuenschwander S; Prêtre R; Genoni M; Zund G; Hoerstrup SP Circulation; 2006 Jul; 114(1 Suppl):I125-31. PubMed ID: 16820561 [TBL] [Abstract][Full Text] [Related]
27. Construction of ureteral grafts by seeding bone marrow mesenchymal stem cells and smooth muscle cells into bladder acellular matrix. Liao W; Yang S; Song C; Li X; Li Y; Xiong Y Transplant Proc; 2013 Mar; 45(2):730-4. PubMed ID: 23498814 [TBL] [Abstract][Full Text] [Related]
29. Application of adult mesenchymal stem cells in bone and vascular tissue engineering. Trávníčková M; Bačáková L Physiol Res; 2018 Dec; 67(6):831-850. PubMed ID: 30204468 [TBL] [Abstract][Full Text] [Related]
30. Microstructured human fibroblast-derived extracellular matrix scaffold for vascular media fabrication. Bourget JM; Laterreur V; Gauvin R; Guillemette MD; Miville-Godin C; Mounier M; Tondreau MY; Tremblay C; Labbé R; Ruel J; Auger FA; Veres T; Germain L J Tissue Eng Regen Med; 2017 Sep; 11(9):2479-2489. PubMed ID: 27125623 [TBL] [Abstract][Full Text] [Related]
31. Construction of tissue-engineered small-diameter vascular grafts in fibrin scaffolds in 30 days. Gui L; Boyle MJ; Kamin YM; Huang AH; Starcher BC; Miller CA; Vishnevetsky MJ; Niklason LE Tissue Eng Part A; 2014 May; 20(9-10):1499-507. PubMed ID: 24320793 [TBL] [Abstract][Full Text] [Related]
32. The role of organ level conditioning on the promotion of engineered heart valve tissue development in-vitro using mesenchymal stem cells. Ramaswamy S; Gottlieb D; Engelmayr GC; Aikawa E; Schmidt DE; Gaitan-Leon DM; Sales VL; Mayer JE; Sacks MS Biomaterials; 2010 Feb; 31(6):1114-25. PubMed ID: 19944458 [TBL] [Abstract][Full Text] [Related]
33. Effects of extracellular matrix on differentiation of human bone marrow-derived mesenchymal stem cells into smooth muscle cell lineage: utility for cardiovascular tissue engineering. Suzuki S; Narita Y; Yamawaki A; Murase Y; Satake M; Mutsuga M; Okamoto H; Kagami H; Ueda M; Ueda Y Cells Tissues Organs; 2010; 191(4):269-80. PubMed ID: 19940434 [TBL] [Abstract][Full Text] [Related]
34. Micrometer scale guidance of mesenchymal stem cells to form structurally oriented large-scale tissue engineered cartilage. Chou CL; Rivera AL; Williams V; Welter JF; Mansour JM; Drazba JA; Sakai T; Baskaran H Acta Biomater; 2017 Sep; 60():210-219. PubMed ID: 28709984 [TBL] [Abstract][Full Text] [Related]
35. Mesenchymal stem cells delivered in a microsphere-based engineered skin contribute to cutaneous wound healing and sweat gland repair. Huang S; Lu G; Wu Y; Jirigala E; Xu Y; Ma K; Fu X J Dermatol Sci; 2012 Apr; 66(1):29-36. PubMed ID: 22398148 [TBL] [Abstract][Full Text] [Related]
36. Dynamic culturing of smooth muscle cells in tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering. Song Y; Wennink JW; Kamphuis MM; Sterk LM; Vermes I; Poot AA; Feijen J; Grijpma DW Tissue Eng Part A; 2011 Feb; 17(3-4):381-7. PubMed ID: 20807005 [TBL] [Abstract][Full Text] [Related]
37. In vitro response of the bone marrow-derived mesenchymal stem cells seeded in a type-I collagen-glycosaminoglycan scaffold for skin wound repair under the mechanical loading condition. Kobayashi M; Spector M Mol Cell Biomech; 2009 Dec; 6(4):217-27. PubMed ID: 19899445 [TBL] [Abstract][Full Text] [Related]
38. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Wang Y; Kim UJ; Blasioli DJ; Kim HJ; Kaplan DL Biomaterials; 2005 Dec; 26(34):7082-94. PubMed ID: 15985292 [TBL] [Abstract][Full Text] [Related]
39. Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Park JS; Chu JS; Cheng C; Chen F; Chen D; Li S Biotechnol Bioeng; 2004 Nov; 88(3):359-68. PubMed ID: 15486942 [TBL] [Abstract][Full Text] [Related]
40. Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells. Chong PP; Selvaratnam L; Abbas AA; Kamarul T J Orthop Res; 2012 Apr; 30(4):634-42. PubMed ID: 21922534 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]