BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 26504784)

  • 21. Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering.
    Yan J; Miao Y; Tan H; Zhou T; Ling Z; Chen Y; Xing X; Hu X
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():274-84. PubMed ID: 27040220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering.
    Liu M; Dai L; Shi H; Xiong S; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():700-712. PubMed ID: 25686999
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering three-dimensional macroporous hydroxyethyl methacrylate-alginate-gelatin cryogel for growth and proliferation of lung epithelial cells.
    Singh D; Zo SM; Kumar A; Han SS
    J Biomater Sci Polym Ed; 2013; 24(11):1343-59. PubMed ID: 23796035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioactive TGF-β1/HA alginate-based scaffolds for osteochondral tissue repair: design, realization and multilevel characterization.
    Coluccino L; Stagnaro P; Vassalli M; Scaglione S
    J Appl Biomater Funct Mater; 2016 Apr; 14(1):e42-52. PubMed ID: 26743836
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D porous calcium-alginate scaffolds cell culture system improved human osteoblast cell clusters for cell therapy.
    Chen CY; Ke CJ; Yen KC; Hsieh HC; Sun JS; Lin FH
    Theranostics; 2015; 5(6):643-55. PubMed ID: 25825603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds.
    Balakrishnan B; Jayakrishnan A
    Biomaterials; 2005 Jun; 26(18):3941-51. PubMed ID: 15626441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of Chitin Whiskers on Physical Properties and Osteoblast Culture of Alginate Based Nanocomposite Hydrogels.
    Huang Y; Yao M; Zheng X; Liang X; Su X; Zhang Y; Lu A; Zhang L
    Biomacromolecules; 2015 Nov; 16(11):3499-507. PubMed ID: 26393272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cells (MC3T3-E1)-laden alginate scaffolds fabricated by a modified solid-freeform fabrication process supplemented with an aerosol spraying.
    Ahn S; Lee H; Bonassar LJ; Kim G
    Biomacromolecules; 2012 Sep; 13(9):2997-3003. PubMed ID: 22913233
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermogelling bioadhesive scaffolds for intervertebral disk tissue engineering: preliminary in vitro comparison of aldehyde-based versus alginate microparticle-mediated adhesion.
    Wiltsey C; Christiani T; Williams J; Scaramazza J; Van Sciver C; Toomer K; Sheehan J; Branda A; Nitzl A; England E; Kadlowec J; Iftode C; Vernengo J
    Acta Biomater; 2015 Apr; 16():71-80. PubMed ID: 25641647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlled mineralisation and recrystallisation of brushite within alginate hydrogels.
    Bjørnøy SH; Bassett DC; Ucar S; Andreassen JP; Sikorski P
    Biomed Mater; 2016 Feb; 11(1):015013. PubMed ID: 26836293
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of poly(D,L-lactic acid) scaffolds using alginate particles.
    Yu G; Fan Y
    J Biomater Sci Polym Ed; 2008; 19(1):87-98. PubMed ID: 18177556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Drug-Loadable Calcium Alginate Hydrogel System for Use in Oral Bone Tissue Repair.
    Chen L; Shen R; Komasa S; Xue Y; Jin B; Hou Y; Okazaki J; Gao J
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28481253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controllable 3D alginate hydrogel patterning via visible-light induced electrodeposition.
    Dai G; Wan W; Zhao Y; Wang Z; Li W; Shi P; Shen Y
    Biofabrication; 2016 Apr; 8(2):025004. PubMed ID: 27108617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility.
    Lee C; Shin J; Lee JS; Byun E; Ryu JH; Um SH; Kim DI; Lee H; Cho SW
    Biomacromolecules; 2013 Jun; 14(6):2004-13. PubMed ID: 23639096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elastic, superporous hydrogel hybrids of polyacrylamide and sodium alginate.
    Omidian H; Rocca JG; Park K
    Macromol Biosci; 2006 Sep; 6(9):703-10. PubMed ID: 16967483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tunable stress relaxation behavior of an alginate-polyacrylamide hydrogel: comparison with muscle tissue.
    Fitzgerald MM; Bootsma K; Berberich JA; Sparks JL
    Biomacromolecules; 2015 May; 16(5):1497-505. PubMed ID: 25812913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design, fabrication and characterization of oxidized alginate-gelatin hydrogels for muscle tissue engineering applications.
    Baniasadi H; Mashayekhan S; Fadaoddini S; Haghirsharifzamini Y
    J Biomater Appl; 2016 Jul; 31(1):152-61. PubMed ID: 26916948
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Friction of sodium alginate hydrogel scaffold fabricated by 3-D printing.
    Yang Q; Li J; Xu H; Long S; Li X
    J Biomater Sci Polym Ed; 2017 Apr; 28(5):459-469. PubMed ID: 28105891
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gel microstructure regulates proliferation and differentiation of MC3T3-E1 cells encapsulated in alginate beads.
    Lee BH; Li B; Guelcher SA
    Acta Biomater; 2012 May; 8(5):1693-702. PubMed ID: 22306825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of the chitosan/poly(glutamic acid)/alginate polyelectrolyte complexing hydrogel and study on its drug releasing property.
    Chen Y; Yan X; Zhao J; Feng H; Li P; Tong Z; Yang Z; Li S; Yang J; Jin S
    Carbohydr Polym; 2018 Jul; 191():8-16. PubMed ID: 29661325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.