These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26504998)

  • 1. A Nanoscale-Localized Ion Damage Josephson Junction Using Focused Ion Beam and Ion Implanter.
    Wu CH; Ku WS; Jhan FJ; Chen JH; Jeng JT
    J Nanosci Nanotechnol; 2015 May; 15(5):3728-32. PubMed ID: 26504998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An angled nano-tunnel fabricated on poly(methyl methacrylate) by a focused ion beam.
    Her EK; Chung HS; Moon MW; Oh KH
    Nanotechnology; 2009 Jul; 20(28):285301. PubMed ID: 19546496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process.
    Urbánek M; Uhlír V; Bábor P; Kolíbalová E; Hrncír T; Spousta J; Sikola T
    Nanotechnology; 2010 Apr; 21(14):145304. PubMed ID: 20215654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent developments in nanofabrication using focused ion beams.
    Tseng AA
    Small; 2005 Oct; 1(10):924-39. PubMed ID: 17193371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Very large scale integration of nanopatterned YBa2Cu3O7-delta Josephson junctions in a two-dimensional array.
    Cybart SA; Anton SM; Wu SM; Clarke J; Dynes RC
    Nano Lett; 2009 Oct; 9(10):3581-5. PubMed ID: 19751069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic properties of high-T
    Couëdo F; Amari P; Feuillet-Palma C; Ulysse C; Srivastava YK; Singh R; Bergeal N; Lesueur J
    Sci Rep; 2020 Jun; 10(1):10256. PubMed ID: 32581302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of using stencil masks made by focused ion beam milling on permalloy (Ni81Fe19) nanostructures.
    Bates JR; Miyahara Y; Burgess JA; Iglesias-Freire O; Grütter P
    Nanotechnology; 2013 Mar; 24(11):115301. PubMed ID: 23449320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of molecular adsorption on the electrical conductance of single au nanowires fabricated by electron-beam lithography and focused ion beam etching.
    Shi P; Zhang J; Lin HY; Bohn PW
    Small; 2010 Nov; 6(22):2598-603. PubMed ID: 20957763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct fabrication of nanopores in a metal foil using focused ion beam with in situ measurements of the penetrating ion beam current.
    Nagoshi K; Honda J; Sakaue H; Takahagi T; Suzuki H
    Rev Sci Instrum; 2009 Dec; 80(12):125102. PubMed ID: 20059165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and characterization of high-T(c) YBa(2)Cu(3)O(7-x) nanoSQUIDs made by focused ion beam milling.
    Wu CH; Chou YT; Kuo WC; Chen JH; Wang LM; Chen JC; Chen KL; Sou UC; Yang HC; Jeng JT
    Nanotechnology; 2008 Aug; 19(31):315304. PubMed ID: 21828785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of nanopore array.
    Fu Y; Bryan NK; Fatt LT
    J Nanosci Nanotechnol; 2006 Jul; 6(7):1954-60. PubMed ID: 17025108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focused-ion-beam induced interfacial intermixing of magnetic bilayers for nanoscale control of magnetic properties.
    Burn DM; Hase TP; Atkinson D
    J Phys Condens Matter; 2014 Jun; 26(23):236002. PubMed ID: 24833038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Focused ion beam fabrication of solidified ferritin into nanoscale volumes for compositional analysis using atom probe tomography.
    Greene ME; Kelly TF; Larson DJ; Prosa TJ
    J Microsc; 2012 Sep; 247(3):288-99. PubMed ID: 22906016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unravelling new principles of site-selective doping contrast in the dual-beam focused ion beam/scanning electron microscope.
    Chee AKW
    Ultramicroscopy; 2020 Jun; 213():112947. PubMed ID: 32361280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry.
    Huang JS; Callegari V; Geisler P; Brüning C; Kern J; Prangsma JC; Wu X; Feichtner T; Ziegler J; Weinmann P; Kamp M; Forchel A; Biagioni P; Sennhauser U; Hecht B
    Nat Commun; 2010; 1():150. PubMed ID: 21267000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the parameters of focused ion beam for ultra-precise fabrication of nanostructures.
    Kolomiytsev AS; Gromov AL; Il'in OI; Panchenko IV; Kotosonova AV; Ballouk A; Rodriguez D; Ageev OA
    Ultramicroscopy; 2022 Apr; 234():113481. PubMed ID: 35152156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoskiving: a new method to produce arrays of nanostructures.
    Xu Q; Rioux RM; Dickey MD; Whitesides GM
    Acc Chem Res; 2008 Dec; 41(12):1566-77. PubMed ID: 18646870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of slice thickness and shape milled by a focused ion beam for three-dimensional reconstruction of microstructures.
    Jones HG; Mingard KP; Cox DC
    Ultramicroscopy; 2014 Apr; 139():20-8. PubMed ID: 24531396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fabrication of plasmonic Au nanovoid trench arrays by guided self-assembly.
    Li XV; Cole RM; Milhano CA; Bartlett PN; Soares BF; Baumberg JJ; de Groot CH
    Nanotechnology; 2009 Jul; 20(28):285309. PubMed ID: 19546497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characteristics of nanocrystalline copper after carbon ion implantation.
    Lin WM; Wei YH; Du HY; Hou LF; Wang GD; Bi HX; Xu BS
    Micron; 2011 Oct; 42(7):691-4. PubMed ID: 21549609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.