BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26505027)

  • 1. Charge Carrier Transport Mechanism Based on Stable Low Voltage Organic Bistable Memory Device.
    Ramana VV; Moodley MK; Kumar AB; Kannan V
    J Nanosci Nanotechnol; 2015 May; 15(5):3934-8. PubMed ID: 26505027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible resistive switching bistable memory devices using ZnO nanoparticles embedded in polyvinyl alcohol (PVA) matrix and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS).
    Hmar JJL
    RSC Adv; 2018 May; 8(36):20423-20433. PubMed ID: 35541659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer.
    Son DI; Park DH; Choi WK; Cho SH; Kim WT; Kim TW
    Nanotechnology; 2009 May; 20(19):195203. PubMed ID: 19420634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Memory Effect of ZnO Nanorods Embedded in an Insulating Polymethylmethacrylate Layer.
    Valanarasu S; Kathaiingam A; Rhee JK; Chandramohan R; Vijayan TA; Karunakaran M
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1416-20. PubMed ID: 26353665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carrier transport mechanisms of the writing and the erasing processes for Al/ZnO nanoparticles embedded in a polymethyl methacrylate layer/C60/p-Si diodes.
    Li F; Cho SW; Park KH; Son DI; Kim TW
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4721-4. PubMed ID: 21128486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical bistabilities and memory mechanisms of organic bistable devices fabricated utilizing SnO2 nanoparticles embedded in a poly(methyl methacrylate) layer.
    Kwak JK; Yun DY; Son DI; Jung JH; Lee DU; Kim TW
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7735-8. PubMed ID: 21138021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operating mechanisms of organic bistable devices containing ZnO nanoparticles embedded in a poly-4-vinyl-phenol layer.
    Park KH; Li F; Jung JH; Son DI; Cho SW; Kim TW
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4801-4. PubMed ID: 21128503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of memory margins in the polymer composite of [6,6]-phenyl-C
    Sun Y; Lu J; Ai C; Wen D; Bai X
    Phys Chem Chem Phys; 2016 Nov; 18(44):30808-30814. PubMed ID: 27801477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical bistabilities and memory stabilities of nonvolatile bistable devices fabricated utilizing C(60) molecules embedded in a polymethyl methacrylate layer.
    Cho SH; Lee DI; Jung JH; Kim TW
    Nanotechnology; 2009 Aug; 20(34):345204. PubMed ID: 19652271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible organic bistable devices based on graphene embedded in an insulating poly(methyl methacrylate) polymer layer.
    Son DI; Kim TW; Shim JH; Jung JH; Lee DU; Lee JM; Park WI; Choi WK
    Nano Lett; 2010 Jul; 10(7):2441-7. PubMed ID: 20504010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly flexible and stable resistive switching devices based on WS
    Lee JH; Wu C; Sung S; An H; Kim TW
    Sci Rep; 2019 Dec; 9(1):19316. PubMed ID: 31848387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the ZnS Shell Layer on the Electrical Properties of Organic Bistable Devices Fabricated Utilizing CdSe/CdS/ZnS Core-Shell-Shell Quantum Dots Embedded in a Poly(methylmethacrylate) Layer.
    Lee NH; Yun DY; Choi DH; Kim SW; Kim TW
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6271-4. PubMed ID: 27427701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance memory device using graphene oxide flakes sandwiched polymethylmethacrylate layers.
    Valanarasu S; Kulandaisamy I; Kathalingam A; Rhee JK; Vijayan TA; Chandramohan R
    J Nanosci Nanotechnol; 2013 Oct; 13(10):6755-9. PubMed ID: 24245139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced resistive switching performance in yttrium-doped CH
    Luo F; Ruan L; Tong J; Wu Y; Sun C; Qin G; Tian F; Zhang X
    Phys Chem Chem Phys; 2021 Oct; 23(38):21757-21768. PubMed ID: 34550133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistive Memory-Switching Behavior in Solution-Processed Trans, trans-1,4-bis-(2-(2-naphthyl)-2-(butoxycarbonyl)-vinyl) Benzene-PVA-Composite-Based Aryl Acrylate on ITO-Coated PET.
    Kamath R; Sarkar P; Melanthota SK; Biswas R; Mazumder N; De S
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene Oxide as a Dielectric and Charge Trap Element in Pentacene-Based Organic Thin-Film Transistors for Nonvolatile Memory.
    Sarkar KJ; Pal B; Banerji P
    ACS Omega; 2019 Feb; 4(2):4312-4319. PubMed ID: 31459636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliable and Low-Power Multilevel Resistive Switching in TiO
    Xiao M; Musselman KP; Duley WW; Zhou YN
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4808-4817. PubMed ID: 28098978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ZnO/NiO diode-based charge-trapping layer for flash memory featuring low-voltage operation.
    Sun CE; Chen CY; Chu KL; Shen YS; Lin CC; Wu YH
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6383-90. PubMed ID: 25781005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer-ultrathin graphite sheet-polymer composite structured flexible nonvolatile bistable organic memory devices.
    Son DI; Shim JH; Park DH; Jung JH; Lee JM; Park WI; Kim TW; Choi WK
    Nanotechnology; 2011 Jul; 22(29):295203. PubMed ID: 21685558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the characteristics of an organic nano floating gate memory by a self-assembled monolayer.
    Chang HC; Lee WY; Tai Y; Wu KW; Chen WC
    Nanoscale; 2012 Oct; 4(20):6629-36. PubMed ID: 22983559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.