BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 26505322)

  • 1. Red mud (RM)-Induced enhancement of iron plaque formation reduces arsenic and metal accumulation in two wetland plant species.
    Yang JX; Guo QJ; Yang J; Zhou XY; Ren HY; Zhang HZ; Xu RX; Wang XD; Peters M; Zhu GX; Wei RF; Tian LY; Han XK
    Int J Phytoremediation; 2016; 18(3):269-77. PubMed ID: 26505322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of elemental uptake in the root chemistry of wetland plants.
    Aryal R; Nirola R; Beecham S; Kamruzzaman M
    Int J Phytoremediation; 2016 Sep; 18(9):936-42. PubMed ID: 26709636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal uptake capability of Cyperus articulatus L. and its role in mitigating heavy metals from contaminated wetlands.
    Galal TM; Gharib FA; Ghazi SM; Mansour KH
    Environ Sci Pollut Res Int; 2017 Sep; 24(27):21636-21648. PubMed ID: 28752307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants.
    Tripathi RD; Tripathi P; Dwivedi S; Kumar A; Mishra A; Chauhan PS; Norton GJ; Nautiyal CS
    Metallomics; 2014 Oct; 6(10):1789-800. PubMed ID: 24925182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metal (Pb, Zn) uptake and chemical changes in rhizosphere soils of four wetland plants with different radial oxygen loss.
    Yang J; Ma Z; Ye Z; Guo X; Qiu R
    J Environ Sci (China); 2010; 22(5):696-702. PubMed ID: 20608505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus.
    Chandra R; Yadav S
    Int J Phytoremediation; 2011 Jul; 13(6):580-91. PubMed ID: 21972504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Roles of rhizosphere in remediation of contaminated soils and its mechanisms].
    Wei S; Zhou Q; Zhang K; Liang J
    Ying Yong Sheng Tai Xue Bao; 2003 Jan; 14(1):143-7. PubMed ID: 12722459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial distribution of arsenic and heavy metals in willow roots from a contaminated floodplain soil measured by X-ray fluorescence spectroscopy.
    Zimmer D; Kruse J; Baum C; Borca C; Laue M; Hause G; Meissner R; Leinweber P
    Sci Total Environ; 2011 Sep; 409(19):4094-100. PubMed ID: 21762954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between sulfur and lead in toxicity, iron plaque formation and lead accumulation in rice plant.
    Yang J; Liu Z; Wan X; Zheng G; Yang J; Zhang H; Guo L; Wang X; Zhou X; Guo Q; Xu R; Zhou G; Peters M; Zhu G; Wei R; Tian L; Han X
    Ecotoxicol Environ Saf; 2016 Jun; 128():206-12. PubMed ID: 26946285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term field metal extraction by Pelargonium: phytoextraction efficiency in relation to plant maturity.
    Shahid M; Arshad M; Kaemmerer M; Pinelli E; Probst A; Baque D; Pradere P; Dumat C
    Int J Phytoremediation; 2012; 14(5):493-505. PubMed ID: 22567727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of arsenic in submerged soil by wetland plants.
    Jomjun N; Siripen T; Maliwan S; Jintapat N; Prasak T; Somporn C; Petch P
    Int J Phytoremediation; 2011 Jan; 13(1):35-46. PubMed ID: 21598766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Fe plaque and organic acids on metal uptake by wetland plants under drained and waterlogged conditions.
    Li WC; Deng H; Wong MH
    Environ Pollut; 2017 Dec; 231(Pt 1):732-741. PubMed ID: 28858668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of extrinsic arbuscular mycorrhizal fungi in heavy metal-contaminated wetlands with various soil moisture levels.
    Zheng S; Wang C; Shen Z; Quan Y; Liu X
    Int J Phytoremediation; 2015; 17(1-6):208-14. PubMed ID: 25397977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation.
    Martínez-Alcalá I; Walker DJ; Bernal MP
    Ecotoxicol Environ Saf; 2010 May; 73(4):595-602. PubMed ID: 20060590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals.
    Antonkiewicz J; Para A
    Int J Phytoremediation; 2016; 18(3):245-50. PubMed ID: 26280197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of heavy metal toxicity and constructed wetland system as a tool in remediation.
    Usharani B; Vasudevan N
    Arch Environ Occup Health; 2016; 71(2):102-10. PubMed ID: 25454352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Bioaccumulation of heavy metals by the dominant plants growing in Huayuan manganese and lead/zinc mineland, Xiangxi].
    Yang SX; Tian QJ; Liang SC; Zhou YY; Zou HC
    Huan Jing Ke Xue; 2012 Jun; 33(6):2038-45. PubMed ID: 22946193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Tolerance of Arundo donax to heavy metals].
    Han Z; Hu Z
    Ying Yong Sheng Tai Xue Bao; 2005 Jan; 16(1):161-5. PubMed ID: 15852979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhizostabilization of metals in soils using Lupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC541.
    El Aafi N; Brhada F; Dary M; Maltouf AF; Pajuelo E
    Int J Phytoremediation; 2012 Mar; 14(3):261-74. PubMed ID: 22567710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron plaque formation and heavy metal uptake in Spartina alterniflora at different tidal levels and waterlogging conditions.
    Xu Y; Sun X; Zhang Q; Li X; Yan Z
    Ecotoxicol Environ Saf; 2018 May; 153():91-100. PubMed ID: 29407744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.