BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 2650562)

  • 1. Exercise-induced fall in insulin and hepatic carbohydrate metabolism during muscular work.
    Wasserman DH; Williams PE; Lacy DB; Goldstein RE; Cherrington AD
    Am J Physiol; 1989 Apr; 256(4 Pt 1):E500-9. PubMed ID: 2650562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercise-induced fall in insulin and increase in fat metabolism during prolonged muscular work.
    Wasserman DH; Lacy DB; Goldstein RE; Williams PE; Cherrington AD
    Diabetes; 1989 Apr; 38(4):484-90. PubMed ID: 2647555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency of compensation for absence of fall in insulin during exercise.
    Wasserman DH; Lacy DB; Colburn CA; Bracy D; Cherrington AD
    Am J Physiol; 1991 Nov; 261(5 Pt 1):E587-97. PubMed ID: 1951683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucagon is a primary controller of hepatic glycogenolysis and gluconeogenesis during muscular work.
    Wasserman DH; Spalding JA; Lacy DB; Colburn CA; Goldstein RE; Cherrington AD
    Am J Physiol; 1989 Jul; 257(1 Pt 1):E108-17. PubMed ID: 2665514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hepatic nerves are not essential to the increase in hepatic glucose production during muscular work.
    Wasserman DH; Williams PE; Lacy DB; Bracy D; Cherrington AD
    Am J Physiol; 1990 Aug; 259(2 Pt 1):E195-203. PubMed ID: 2200275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise-induced fall in insulin: mechanism of action at the liver and effects on muscle glucose metabolism.
    Zinker BA; Mohr T; Kelly P; Namdaran K; Bracy DP; Wasserman DH
    Am J Physiol; 1994 May; 266(5 Pt 1):E683-9. PubMed ID: 7911275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of glucose turnover during exercise in pancreatectomized, totally insulin-deficient dogs. Effects of beta-adrenergic blockade.
    Bjorkman O; Miles P; Wasserman D; Lickley L; Vranic M
    J Clin Invest; 1988 Jun; 81(6):1759-67. PubMed ID: 3290252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exercise-induced rise in glucagon and ketogenesis during prolonged muscular work.
    Wasserman DH; Spalding JA; Bracy D; Lacy DB; Cherrington AD
    Diabetes; 1989 Jun; 38(6):799-807. PubMed ID: 2566546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of endogenous glucose production by mild hyperinsulinemia during exercise is determined predominantly by portal venous insulin.
    Camacho RC; Pencek RR; Lacy DB; James FD; Wasserman DH
    Diabetes; 2004 Feb; 53(2):285-93. PubMed ID: 14747277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between glucagon and other counterregulatory hormones during normoglycemic and hypoglycemic exercise in dogs.
    Wasserman DH; Lickley HL; Vranic M
    J Clin Invest; 1984 Oct; 74(4):1404-13. PubMed ID: 6148356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hepatic alpha- and beta-adrenergic receptors are not essential for the increase in R(a) during exercise in diabetes.
    Coker RH; Lacy DB; Williams PE; Wasserman DH
    Am J Physiol Endocrinol Metab; 2000 Mar; 278(3):E444-51. PubMed ID: 10710498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of an acute increase in epinephrine and cortisol on carbohydrate metabolism during insulin deficiency.
    Goldstein RE; Abumrad NN; Lacy DB; Wasserman DH; Cherrington AD
    Diabetes; 1995 Jun; 44(6):672-81. PubMed ID: 7789632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of hepatic alpha- and beta-adrenergic receptor stimulation on hepatic glucose production during heavy exercise.
    Coker RH; Krishna MG; Lacy DB; Bracy DP; Wasserman DH
    Am J Physiol; 1997 Nov; 273(5):E831-8. PubMed ID: 9374667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic role of the exercise-induced increment in epinephrine in the dog.
    Moates JM; Lacy DB; Goldstein RE; Cherrington AD; Wasserman DH
    Am J Physiol; 1988 Oct; 255(4 Pt 1):E428-36. PubMed ID: 3052103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of intrahepatic mechanisms to gluconeogenesis from alanine during exercise and recovery.
    Wasserman DH; Williams PE; Lacy DB; Green DR; Cherrington AD
    Am J Physiol; 1988 Apr; 254(4 Pt 1):E518-25. PubMed ID: 3281473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pancreatic innervation is not essential for exercise-induced changes in glucagon and insulin or glucose kinetics.
    Coker RH; Koyama Y; Lacy DB; Williams PE; Rhèaume N; Wasserman DH
    Am J Physiol; 1999 Dec; 277(6):E1122-9. PubMed ID: 10600803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of acute glucagon removal on the metabolic response to stress hormone infusion in the conscious dog.
    McGuinness OP; Murrell S; Moran C; Bracy D; Cherrington AD
    Metabolism; 1994 Oct; 43(10):1310-7. PubMed ID: 7934986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of acute elevations in plasma cortisol levels on alanine metabolism in the conscious dog.
    Goldstein RE; Reed GW; Wasserman DH; Williams PE; Lacy DB; Buckspan R; Abumrad NN; Cherrington AD
    Metabolism; 1992 Dec; 41(12):1295-303. PubMed ID: 1461135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of hyperglucagonemia on hepatic glycogenolysis and gluconeogenesis after a prolonged fast.
    Hendrick GK; Frizzell RT; Williams PE; Cherrington AD
    Am J Physiol; 1990 May; 258(5 Pt 1):E841-9. PubMed ID: 2185665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of glucose production through hormone secretion and other mechanisms during insulin-induced hypoglycemia.
    Frizzell RT; Hendrick GK; Brown LL; Lacy DB; Donahue EP; Carr RK; Williams PE; Parlow AF; Stevenson RW; Cherrington AD
    Diabetes; 1988 Nov; 37(11):1531-41. PubMed ID: 3053302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.