These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26505660)

  • 21. Effect of robotic manipulation on unidirectional barbed suture integrity: evaluation of tensile strength and sliding force.
    Kaushik D; Clay K; Hossain SG; Park E; Nelson CA; LaGrange CA
    J Endourol; 2012 Jun; 26(6):711-5. PubMed ID: 22141354
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimal suture materials for contaminated gastrointestinal surgery: does infection influence the decrease of the tensile strength of sutures?
    Tanaka Y; Sadahiro S; Ishikawa K; Suzuki T; Kamijo A; Tazume S; Yasuda M
    Surg Today; 2012 Dec; 42(12):1170-5. PubMed ID: 22218873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative evaluation of stiffness of commercial suture materials.
    Chu CC; Kizil Z
    Surg Gynecol Obstet; 1989 Mar; 168(3):233-8. PubMed ID: 2919353
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Biodegradable meniscus fixations: a comparative biomechanical study].
    Seil R; Rupp S; Jurecka C; Georg T; Kohn D
    Rev Chir Orthop Reparatrice Appar Mot; 2003 Feb; 89(1):35-43. PubMed ID: 12610434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanical and clinical performance of a new synthetic monofilament absorbable suture.
    Rodeheaver GT; Beltran KA; Green CW; Faulkner BC; Stiles BM; Stanimir GW; Traeland H; Fried GM; Brown HC; Edlich RF
    J Long Term Eff Med Implants; 1996; 6(3-4):181-98. PubMed ID: 10167360
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradation of absorbable sutures in body fluids and pH buffers.
    Freudenberg S; Rewerk S; Kaess M; Weiss C; Dorn-Beinecke A; Post S
    Eur Surg Res; 2004; 36(6):376-85. PubMed ID: 15591748
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical testing of absorbable suture anchors.
    Meyer DC; Fucentese SF; Ruffieux K; Jacob HA; Gerber C
    Arthroscopy; 2003 Feb; 19(2):188-93. PubMed ID: 12579152
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasma surface modification of synthetic absorbable sutures.
    Loh IH; Lin HL; Chu CC
    J Appl Biomater; 1992; 3(2):131-46. PubMed ID: 10147710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Maxon and PDS--evaluation and physical and biologic properties of monofilament absorbable suture materials].
    Knoop M; Lünstedt B; Thiede A
    Langenbecks Arch Chir; 1987; 371(1):13-28. PubMed ID: 3114577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Handling characteristics of poly(L-lactide-co-epsilon-caprolactone) monofilament suture.
    Tomihata K; Suzuki M; Tomita N
    Biomed Mater Eng; 2005; 15(5):381-91. PubMed ID: 16179759
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of suture material characteristics in an in vitro experimental model.
    Justan I
    Acta Chir Plast; 2010; 52(2-4):45-8. PubMed ID: 21749010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elongation and structural properties of meniscal repair using suture techniques in distraction and shear force scenarios: biomechanical evaluation using a cyclic loading protocol.
    Zantop T; Temmig K; Weimann A; Eggers AK; Raschke MJ; Petersen W
    Am J Sports Med; 2006 May; 34(5):799-805. PubMed ID: 16567460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of commonly used surgical solutions on the tensile strength of absorbable sutures: an in-vitro study.
    Cawthorne DP; Castillo TE; Sivakumar BS
    ANZ J Surg; 2021 Jul; 91(7-8):1451-1454. PubMed ID: 33928746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical and handling properties of braided polyblend polyethylene sutures in comparison to braided polyester and monofilament polydioxanone sutures.
    Wüst DM; Meyer DC; Favre P; Gerber C
    Arthroscopy; 2006 Nov; 22(11):1146-53. PubMed ID: 17084288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The properties of damaged and undamaged suture used in metal and bioabsorbable anchors: an in vitro study.
    Wright PB; Budoff JE; Yeh ML; Kelm ZS; Luo ZP
    Arthroscopy; 2007 Jun; 23(6):655-61. PubMed ID: 17560481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The use of biodegradable sutures for the fixation of tibial eminence fractures in children: a comparison using PDS II, Vicryl and FiberWire.
    Schneppendahl J; Thelen S; Twehues S; Eichler C; Betsch M; Windolf J; Hakimi M; Wild M
    J Pediatr Orthop; 2013 Jun; 33(4):409-14. PubMed ID: 23653031
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polydioxanone (PDS), a novel monofilament synthetic absorbable suture.
    Ray JA; Doddi N; Regula D; Williams JA; Melveger A
    Surg Gynecol Obstet; 1981 Oct; 153(4):497-507. PubMed ID: 6792722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of test temperature and test speed on the mechanical strength of absorbable suture anchors.
    Meyer DC; Felix E; Ruffieux K; Gerber C
    Arthroscopy; 2004 Feb; 20(2):185-90. PubMed ID: 14760353
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical properties of Triclosan sutures.
    Jungwirth-Weinberger A; Grubhofer F; Imam MA; Bachmann E; Wirth S
    J Orthop Res; 2018 Jun; 36(6):1777-1782. PubMed ID: 29205483
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A review of absorbable suture materials in head & neck surgery and introduction of monocryl: a new absorbable suture.
    LaBagnara J
    Ear Nose Throat J; 1995 Jun; 74(6):409-15. PubMed ID: 7628331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.