These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 26505688)

  • 1. The Importance of the Microbial N Cycle in Soil for Crop Plant Nutrition.
    Hirsch PR; Mauchline TH
    Adv Appl Microbiol; 2015; 93():45-71. PubMed ID: 26505688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input.
    Qiao C; Liu L; Hu S; Compton JE; Greaver TL; Li Q
    Glob Chang Biol; 2015 Mar; 21(3):1249-57. PubMed ID: 25380547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil Health Management Enhances Microbial Nitrogen Cycling Capacity and Activity.
    Hu J; Jin VL; Konkel JYM; Schaeffer SM; Schneider LG; DeBruyn JM
    mSphere; 2021 Jan; 6(1):. PubMed ID: 33441406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term N fertilization imbalances potential N acquisition and transformations by soil microbes.
    Huang L; Riggins CW; Rodríguez-Zas S; Zabaloy MC; Villamil MB
    Sci Total Environ; 2019 Nov; 691():562-571. PubMed ID: 31325856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition.
    Coskun D; Britto DT; Shi W; Kronzucker HJ
    Nat Plants; 2017 Jun; 3():17074. PubMed ID: 28585561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing agroecosystem nitrogen management: microbial insights for improved nitrification inhibition.
    Beeckman F; Annetta L; Corrochano-Monsalve M; Beeckman T; Motte H
    Trends Microbiol; 2024 Jun; 32(6):590-601. PubMed ID: 37973432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigation of nitrous oxide emissions from acidic soils by Bacillus amyloliquefaciens, a plant growth-promoting bacterium.
    Wu S; Zhuang G; Bai Z; Cen Y; Xu S; Sun H; Han X; Zhuang X
    Glob Chang Biol; 2018 Jun; 24(6):2352-2365. PubMed ID: 29251817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant influence on nitrification.
    Skiba MW; George TS; Baggs EM; Daniell TJ
    Biochem Soc Trans; 2011 Jan; 39(1):275-8. PubMed ID: 21265787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on ammonia oxidizers and N2O emissions in a grazed pasture soil.
    Dai Y; Di HJ; Cameron KC; He JZ
    Sci Total Environ; 2013 Nov; 465():125-35. PubMed ID: 23021462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: A review.
    Wang X; Bai J; Xie T; Wang W; Zhang G; Yin S; Wang D
    Ecotoxicol Environ Saf; 2021 Sep; 220():112338. PubMed ID: 34015632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential for biological nitrification inhibition to reduce nitrification and N2O emissions in pasture crop-livestock systems.
    Subbarao GV; Rao IM; Nakahara K; Sahrawat KL; Ando Y; Kawashima T
    Animal; 2013 Jun; 7 Suppl 2():322-32. PubMed ID: 23739474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methylotrophic bacteria in sustainable agriculture.
    Kumar M; Tomar RS; Lade H; Paul D
    World J Microbiol Biotechnol; 2016 Jul; 32(7):120. PubMed ID: 27263015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen turnover in soil and global change.
    Ollivier J; Töwe S; Bannert A; Hai B; Kastl EM; Meyer A; Su MX; Kleineidam K; Schloter M
    FEMS Microbiol Ecol; 2011 Oct; 78(1):3-16. PubMed ID: 21707675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects and influence factors of dicyandiamide (DCD) application in agricultural ecosystem].
    Dai Y; He JZ; Shen JP
    Ying Yong Sheng Tai Xue Bao; 2014 Jan; 25(1):279-86. PubMed ID: 24765872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of fertilizers for enhanced nitrogen use efficiency - Trends and perspectives.
    Dimkpa CO; Fugice J; Singh U; Lewis TD
    Sci Total Environ; 2020 Aug; 731():139113. PubMed ID: 32438083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Widespread Use of the Nitrification Inhibitor Nitrapyrin: Assessing Benefits and Costs to Agriculture, Ecosystems, and Environmental Health.
    Woodward EE; Edwards TM; Givens CE; Kolpin DW; Hladik ML
    Environ Sci Technol; 2021 Feb; 55(3):1345-1353. PubMed ID: 33433195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI).
    Subbarao GV; Sahrawat KL; Nakahara K; Rao IM; Ishitani M; Hash CT; Kishii M; Bonnett DG; Berry WL; Lata JC
    Ann Bot; 2013 Jul; 112(2):297-316. PubMed ID: 23118123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen (N) "supplementation, slow release, and retention" strategy improves N use efficiency via the synergistic effect of biochar, nitrogen-fixing bacteria, and dicyandiamide.
    Su Y; Wang Y; Liu G; Zhang Z; Li X; Chen G; Gou Z; Gao Q
    Sci Total Environ; 2024 Jan; 908():168518. PubMed ID: 37967639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peaks of in situ N
    Domeignoz-Horta LA; Philippot L; Peyrard C; Bru D; Breuil MC; Bizouard F; Justes E; Mary B; Léonard J; Spor A
    Glob Chang Biol; 2018 Jan; 24(1):360-370. PubMed ID: 28752605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrification-denitrification dynamics and community structure of ammonia oxidizing bacteria in a high yield irrigated Philippine rice field.
    Nicolaisen MH; Risgaard-Petersen N; Revsbech NP; Reichardt W; Ramsing NB
    FEMS Microbiol Ecol; 2004 Sep; 49(3):359-69. PubMed ID: 19712286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.