These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26505730)

  • 1. Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer.
    Sotiriou GA; Blattmann CO; Deligiannakis Y
    Nanoscale; 2016 Jan; 8(2):796-803. PubMed ID: 26505730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-enhanced Raman scattering on silver nanostructured films prepared by spray-deposition.
    Brayner R; Iglesias R; Truong S; Beji Z; Felidj N; Fiévet F; Aubard J
    Langmuir; 2010 Nov; 26(22):17465-9. PubMed ID: 20942468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties.
    Salehi S; Shandiz SA; Ghanbar F; Darvish MR; Ardestani MS; Mirzaie A; Jafari M
    Int J Nanomedicine; 2016; 11():1835-46. PubMed ID: 27199558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement.
    Guo P; Sikdar D; Huang X; Si KJ; Xiong W; Gong S; Yap LW; Premaratne M; Cheng W
    Nanoscale; 2015 Feb; 7(7):2862-8. PubMed ID: 25599516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation, characterization and in vitro release study of gallic acid loaded silica nanoparticles for controlled release.
    Hu H; Nie L; Feng S; Suo J
    Pharmazie; 2013 Jun; 68(6):401-5. PubMed ID: 23875245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable silver/biopolymer hybrid plasmonic nanostructures for high performance surface enhanced Raman scattering (SERS).
    Sundaram J; Park B; Kwon Y
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5382-90. PubMed ID: 23882767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Continuum of Proton-Coupled Electron Transfer Reactivity.
    Darcy JW; Koronkiewicz B; Parada GA; Mayer JM
    Acc Chem Res; 2018 Oct; 51(10):2391-2399. PubMed ID: 30234963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile fabrication and upconversion luminescence enhancement of LaF3:Yb3+/Ln3+@SiO2 (Ln = Er, Tm) nanostructures decorated with Ag nanoparticles.
    He E; Zheng H; Dong J; Gao W; Han Q; Li J; Hui L; Lu Y; Tian H
    Nanotechnology; 2014 Jan; 25(4):045603. PubMed ID: 24398901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles.
    Bu Y; Lee S
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon Nanodot-Decorated Ag@SiO2 Nanoparticles for Fluorescence and Surface-Enhanced Raman Scattering Immunoassays.
    Zhang X; Du X
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):1033-40. PubMed ID: 26692186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition from hydrogen atom to hydride abstraction by Mn4O4(O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6.
    Carrell TG; Bourles E; Lin M; Dismukes GC
    Inorg Chem; 2003 May; 42(9):2849-58. PubMed ID: 12716176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications.
    Intartaglia R; Das G; Bagga K; Gopalakrishnan A; Genovese A; Povia M; Di Fabrizio E; Cingolani R; Diaspro A; Brandi F
    Phys Chem Chem Phys; 2013 Mar; 15(9):3075-82. PubMed ID: 23196320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates.
    Jackson JB; Halas NJ
    Proc Natl Acad Sci U S A; 2004 Dec; 101(52):17930-5. PubMed ID: 15608058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green synthesis and electrophoretic deposition of Ag nanoparticles on SiO₂/Si(100).
    Giallongo G; Rizzi GA; Weber V; Ennas G; Signorini R; Granozzi G
    Nanotechnology; 2013 Aug; 24(34):345501. PubMed ID: 23900002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model.
    Chu Y; Wang D; Zhu W; Crozier KB
    Opt Express; 2011 Aug; 19(16):14919-28. PubMed ID: 21934853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saturable absorption in composites doped with metal nanoparticles.
    Kim KH; Husakou A; Herrmann J
    Opt Express; 2010 Oct; 18(21):21918-25. PubMed ID: 20941091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial Separation of Plasmonic Hot-Electron Generation and a Hydrodehalogenation Reaction Center Using a DNA Wire.
    Kogikoski S; Dutta A; Bald I
    ACS Nano; 2021 Dec; 15(12):20562-20573. PubMed ID: 34875168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays.
    Dai ZG; Xiao XH; Zhang YP; Ren F; Wu W; Zhang SF; Zhou J; Mei F; Jiang CZ
    Nanotechnology; 2012 Aug; 23(33):335701. PubMed ID: 22842646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ag@Au core-shell nanoparticles synthesized by pulsed laser ablation in water: Effect of plasmon coupling and their SERS performance.
    Vinod M; Gopchandran KG
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():913-9. PubMed ID: 26004101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.