BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 26505733)

  • 1. Isolation and characterization of human intestinal Enterococcus avium EFEL009 converting rutin to quercetin.
    Shin NR; Moon JS; Shin SY; Li L; Lee YB; Kim TJ; Han NS
    Lett Appl Microbiol; 2016 Jan; 62(1):68-74. PubMed ID: 26505733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of rutin deglycosylated metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS.
    Yang J; Qian D; Jiang S; Shang EX; Guo J; Duan JA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Jun; 898():95-100. PubMed ID: 22583754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of rutin and quercitrin in stimulating flavonol glycosidase activity by cultured cell-free microbial preparations of human feces and saliva.
    Macdonald IA; Mader JA; Bussard RG
    Mutat Res; 1983 Nov; 122(2):95-102. PubMed ID: 6419088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of rutin and poncirin by human intestinal microbiota and cloning of their metabolizing α-L-rhamnosidase from Bifidobacterium dentium.
    Bang SH; Hyun YJ; Shim J; Hong SW; Kim DH
    J Microbiol Biotechnol; 2015 Jan; 25(1):18-25. PubMed ID: 25179902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rutin-induced beta-glucosidase activity in Streptococcus faecium VGH-1 and Streptococcus sp. strain FRP-17 isolated from human feces: formation of the mutagen, quercetin, from rutin.
    MacDonald IA; Bussard RG; Hutchison DM; Holdeman LV
    Appl Environ Microbiol; 1984 Feb; 47(2):350-5. PubMed ID: 6424566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities.
    Kim DH; Jung EA; Sohng IS; Han JA; Kim TH; Han MJ
    Arch Pharm Res; 1998 Feb; 21(1):17-23. PubMed ID: 9875509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans.
    Bokkenheuser VD; Shackleton CH; Winter J
    Biochem J; 1987 Dec; 248(3):953-6. PubMed ID: 3435494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract.
    Schneider H; Schwiertz A; Collins MD; Blaut M
    Arch Microbiol; 1999 Jan; 171(2):81-91. PubMed ID: 9914304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deglycosylation of isoflavone C-glycosides by newly isolated human intestinal bacteria.
    Kim M; Lee J; Han J
    J Sci Food Agric; 2015 Jul; 95(9):1925-31. PubMed ID: 25199800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutagenicity of rutin and the glycosidic activity of cultured cell-free microbial preparations of human faeces and saliva.
    Laires A; Pacheco P; Rueff J
    Food Chem Toxicol; 1989 Jul; 27(7):437-43. PubMed ID: 2777147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A soluble flavonoid-glycoside, alphaG-rutin, is absorbed as glycosides in the isolated gastric and intestinal mucosa.
    Matsumoto M; Matsukawa N; Mineo H; Chiji H; Hara H
    Biosci Biotechnol Biochem; 2004 Sep; 68(9):1929-34. PubMed ID: 15388969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of rutin to antiproliferative quercetin-3-glucoside by Aspergillus niger.
    You HJ; Ahn HJ; Ji GE
    J Agric Food Chem; 2010 Oct; 58(20):10886-92. PubMed ID: 20886886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of cytotoxic and genotoxic responses by natural and novel quercetin glycosides.
    Engen A; Maeda J; Wozniak DE; Brents CA; Bell JJ; Uesaka M; Aizawa Y; Kato TA
    Mutat Res Genet Toxicol Environ Mutagen; 2015 Jun; 784-785():15-22. PubMed ID: 26046972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quercetin production from rutin by a thermostable β-rutinosidase from Pyrococcus furiosus.
    Nam HK; Hong SH; Shin KC; Oh DK
    Biotechnol Lett; 2012 Mar; 34(3):483-9. PubMed ID: 22052256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransformation of luteoloside by a newly isolated human intestinal bacterium using UHPLC-Q-TOF/MS.
    Tao JH; Wang DG; Yang C; Huang JH; Qiu WQ; Zhao X
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Jun; 991():1-8. PubMed ID: 25899973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of bile acids on formation of the mutagen, quercetin, from two flavonol glycoside precursors by human gut bacterial preparations.
    Mader JA; Macdonald IA
    Mutat Res; 1985 Mar; 155(3):99-104. PubMed ID: 3883158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity.
    Day AJ; DuPont MS; Ridley S; Rhodes M; Rhodes MJ; Morgan MR; Williamson G
    FEBS Lett; 1998 Sep; 436(1):71-5. PubMed ID: 9771896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of bacteriocin-producing bacteria from the intestinal microbiota of elderly Irish subjects.
    Lakshminarayanan B; Guinane CM; O'Connor PM; Coakley M; Hill C; Stanton C; O'Toole PW; Ross RP
    J Appl Microbiol; 2013 Mar; 114(3):886-98. PubMed ID: 23181509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation of flavonoids by intestinal microorganisms.
    Blaut M; Schoefer L; Braune A
    Int J Vitam Nutr Res; 2003 Mar; 73(2):79-87. PubMed ID: 12747214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and characterization of α-L-rhamnosidase from Chloroflexus aurantiacus and its application in the production of isoquercitrin from rutin.
    Shin KC; Seo MJ; Oh DK; Choi MN; Kim DW; Kim YS; Park CS
    Biotechnol Lett; 2019 Mar; 41(3):419-426. PubMed ID: 30666483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.