These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26505910)

  • 41. Screening of transition and post-transition metals to incorporate into copper oxide and copper bismuth oxide for photoelectrochemical hydrogen evolution.
    Berglund SP; Lee HC; Núñez PD; Bard AJ; Mullins CB
    Phys Chem Chem Phys; 2013 Apr; 15(13):4554-65. PubMed ID: 23420023
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction.
    Pati RK; Lee IC; Hou S; Akhuemonkhan O; Gaskell KJ; Wang Q; Frenkel AI; Chu D; Salamanca-Riba LG; Ehrman SH
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2624-35. PubMed ID: 20356136
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials.
    Kong D; Le LT; Li Y; Zunino JL; Lee W
    Langmuir; 2012 Sep; 28(37):13467-72. PubMed ID: 22924965
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrochemical DNA biosensors based on thin gold films sputtered on capacitive nanoporous niobium oxide.
    Rho S; Jahng D; Lim JH; Choi J; Chang JH; Lee SC; Kim KJ
    Biosens Bioelectron; 2008 Jan; 23(6):852-6. PubMed ID: 17936610
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces.
    Yang J; Walczak K; Anzenberg E; Toma FM; Yuan G; Beeman J; Schwartzberg A; Lin Y; Hettick M; Javey A; Ager JW; Yano J; Frei H; Sharp ID
    J Am Chem Soc; 2014 Apr; 136(17):6191-4. PubMed ID: 24720554
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cobalt-phosphate-assisted photoelectrochemical water oxidation by arrays of molybdenum-doped zinc oxide nanorods.
    Lin YG; Hsu YK; Chen YC; Lee BW; Hwang JS; Chen LC; Chen KH
    ChemSusChem; 2014 Sep; 7(9):2748-54. PubMed ID: 25044962
    [TBL] [Abstract][Full Text] [Related]  

  • 47. One-Step Synthesis of Nb
    Su T; Peng R; Hood ZD; Naguib M; Ivanov IN; Keum JK; Qin Z; Guo Z; Wu Z
    ChemSusChem; 2018 Feb; 11(4):688-699. PubMed ID: 29281767
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Photoelectrochemical characterization of nanocrystalline thin-film Cu₂ZnSnS₄ photocathodes.
    Riha SC; Fredrick SJ; Sambur JB; Liu Y; Prieto AL; Parkinson BA
    ACS Appl Mater Interfaces; 2011 Jan; 3(1):58-66. PubMed ID: 21194208
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrochemical preparation of Nb
    Khan SU; Perini JAL; Hussain S; Khan H; Khan S; Boldrin Zanoni MV
    Chemosphere; 2020 Oct; 257():127164. PubMed ID: 32480087
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research.
    Seitz LC; Chen Z; Forman AJ; Pinaud BA; Benck JD; Jaramillo TF
    ChemSusChem; 2014 May; 7(5):1372-85. PubMed ID: 24692256
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol.
    Rajeshwar K; de Tacconi NR; Ghadimkhani G; Chanmanee W; Janáky C
    Chemphyschem; 2013 Jul; 14(10):2251-9. PubMed ID: 23712877
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Activation of Ultrathin Films of Hematite for Photoelectrochemical Water Splitting via H2 Treatment.
    Moir J; Soheilnia N; Liao K; O'Brien P; Tian Y; Burch KS; Ozin GA
    ChemSusChem; 2015 May; 8(9):1557-67. PubMed ID: 25650837
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel borothermal process for the synthesis of nanocrystalline oxides and borides of niobium.
    Jha M; Ramanujachary KV; Lofland SE; Gupta G; Ganguli AK
    Dalton Trans; 2011 Aug; 40(31):7879-88. PubMed ID: 21743887
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction.
    Sasaki K; Zhang L; Adzic RR
    Phys Chem Chem Phys; 2008 Jan; 10(1):159-67. PubMed ID: 18075695
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ethanol-assisted graphene oxide-based thin film formation at pentane-water interface.
    Chen F; Liu S; Shen J; Wei L; Liu A; Chan-Park MB; Chen Y
    Langmuir; 2011 Aug; 27(15):9174-81. PubMed ID: 21714517
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Niobium nitride films formed by rapid thermal processing (RTP): a study of depth profiles and interface reactions by complementary analytical techniques.
    Berendes A; Brunkahl O; Angelkort C; Bock W; Hofer F; Warbichler P; Kolbesen BO
    Anal Bioanal Chem; 2004 Jun; 379(4):554-67. PubMed ID: 15098081
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Solution-Processed Synthesis of Copper Oxide (Cu
    Aktar A; Ahmmed S; Hossain J; Ismail ABM
    ACS Omega; 2020 Oct; 5(39):25125-25134. PubMed ID: 33043191
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effects of preparation conditions for a BaNbO2 N photocatalyst on its physical properties.
    Hisatomi T; Katayama C; Teramura K; Takata T; Moriya Y; Minegishi T; Katayama M; Nishiyama H; Yamada T; Domen K
    ChemSusChem; 2014 Jul; 7(7):2016-21. PubMed ID: 24782277
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thin films that consist of CuO mesocrystal nanosheets: an application of microbial-mineralization-inspired approaches to thin-film formation.
    Ikeda T; Oaki Y; Imai H
    Chem Asian J; 2013 Sep; 8(9):2064-9. PubMed ID: 23784723
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis of monoclinic potassium niobate nanowires that are stable at room temperature.
    Kim S; Lee JH; Lee J; Kim SW; Kim MH; Park S; Chung H; Kim YI; Kim W
    J Am Chem Soc; 2013 Jan; 135(1):6-9. PubMed ID: 23234402
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.