These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 26505999)
1. Effective, Facile, and Selective Hydrolysis of the Chemical Warfare Agent VX Using Zr6-Based Metal-Organic Frameworks. Moon SY; Wagner GW; Mondloch JE; Peterson GW; DeCoste JB; Hupp JT; Farha OK Inorg Chem; 2015 Nov; 54(22):10829-33. PubMed ID: 26505999 [TBL] [Abstract][Full Text] [Related]
2. Degradation of Paraoxon and the Chemical Warfare Agents VX, Tabun, and Soman by the Metal-Organic Frameworks UiO-66-NH de Koning MC; van Grol M; Breijaert T Inorg Chem; 2017 Oct; 56(19):11804-11809. PubMed ID: 28926222 [TBL] [Abstract][Full Text] [Related]
3. Detoxification of Chemical Warfare Agents Using a Zr Moon SY; Proussaloglou E; Peterson GW; DeCoste JB; Hall MG; Howarth AJ; Hupp JT; Farha OK Chemistry; 2016 Oct; 22(42):14864-14868. PubMed ID: 27607019 [TBL] [Abstract][Full Text] [Related]
4. Catalytic degradation of the nerve agent VX by water-swelled polystyrene-supported ammonium fluorides. Marciano D; Goldvaser M; Columbus I; Zafrani Y J Org Chem; 2011 Oct; 76(20):8549-53. PubMed ID: 21905719 [TBL] [Abstract][Full Text] [Related]
5. Determination of S-2-(N,N-diisopropylaminoethyl)- and S-2-(N,N-diethylaminoethyl) methylphosphonothiolate, nerve agent markers, in water samples using strong anion-exchange disk extraction, in vial trimethylsilylation, and gas chromatography-mass spectrometry analysis. Subramaniam R; Åstot C; Juhlin L; Nilsson C; Östin A J Chromatogr A; 2012 Mar; 1229():86-94. PubMed ID: 22326187 [TBL] [Abstract][Full Text] [Related]
6. Photothermally Enhanced Detoxification of Chemical Warfare Agent Simulants Using Bioinspired Core-Shell Dopamine-Melanin@Metal-Organic Frameworks and Their Fabrics. Yao A; Jiao X; Chen D; Li C ACS Appl Mater Interfaces; 2019 Feb; 11(8):7927-7935. PubMed ID: 30688436 [TBL] [Abstract][Full Text] [Related]
7. Reaction of nerve agents with phosphate buffer at pH 7. Creasy WR; Fry RA; McGarvey DJ J Phys Chem A; 2012 Jul; 116(27):7279-86. PubMed ID: 22667763 [TBL] [Abstract][Full Text] [Related]
8. Facile hydrolysis-based chemical destruction of the warfare agents VX, GB, and HD by alumina-supported fluoride reagents. Gershonov E; Columbus I; Zafrani Y J Org Chem; 2009 Jan; 74(1):329-38. PubMed ID: 19053582 [TBL] [Abstract][Full Text] [Related]
9. Comparison of the hydrolytic stability of S-(N,N-diethylaminoethyl) isobutyl methylphosphonothiolate with VX in dilute solution. Crenshaw MD; Hayes TL; Miller TL; Shannon CM J Appl Toxicol; 2001 Dec; 21 Suppl 1():S3-6. PubMed ID: 11920912 [TBL] [Abstract][Full Text] [Related]
10. Dual-Function Metal-Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants. Liu Y; Moon SY; Hupp JT; Farha OK ACS Nano; 2015 Dec; 9(12):12358-64. PubMed ID: 26482030 [TBL] [Abstract][Full Text] [Related]
11. In vitro human skin decontamination efficacy of MOF-808 in decontamination lotion following exposure to the nerve agent VX. Larsson A; Qvarnström J; Lindberg S; Wigenstam E; Öberg L; Afshin Sander R; Johansson S; Bucht A; Thors L Toxicol Lett; 2021 Mar; 339():32-38. PubMed ID: 33370593 [TBL] [Abstract][Full Text] [Related]
12. Swell and Destroy: A Metal-Organic Framework-Containing Polymer Sponge That Immobilizes and Catalytically Degrades Nerve Agents. Kalinovskyy Y; Wright AJ; Hiscock JR; Watts TD; Williams RL; Cooper NJ; Main MJ; Holder SJ; Blight BA ACS Appl Mater Interfaces; 2020 Feb; 12(7):8634-8641. PubMed ID: 31990517 [TBL] [Abstract][Full Text] [Related]
13. Investigating the affinities and persistence of VX nerve agent in environmental matrices. Love AH; Vance AL; Reynolds JG; Davisson ML Chemosphere; 2004 Dec; 57(10):1257-64. PubMed ID: 15519370 [TBL] [Abstract][Full Text] [Related]
14. Breaking Down Chemical Weapons by Metal-Organic Frameworks. Mondal SS; Holdt HJ Angew Chem Int Ed Engl; 2016 Jan; 55(1):42-4. PubMed ID: 26592361 [TBL] [Abstract][Full Text] [Related]
15. Layer-by-Layer Fabrication of Core-Shell Fe Chen R; Tao CA; Zhang Z; Chen X; Liu Z; Wang J ACS Appl Mater Interfaces; 2019 Nov; 11(46):43156-43165. PubMed ID: 31652043 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a phosphodiesterase capable of hydrolyzing EA 2192, the most toxic degradation product of the nerve agent VX. Ghanem E; Li Y; Xu C; Raushel FM Biochemistry; 2007 Aug; 46(31):9032-40. PubMed ID: 17630782 [TBL] [Abstract][Full Text] [Related]
17. Effectiveness and reaction networks of H2O2 vapor with NH3 gas for decontamination of the toxic warfare nerve agent, VX on a solid surface. Gon Ryu S; Wan Lee H J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(14):1417-27. PubMed ID: 26327407 [TBL] [Abstract][Full Text] [Related]
18. Solid-Phase Detoxification of Chemical Warfare Agents using Zirconium-Based Metal Organic Frameworks and the Moisture Effects: Analyze via Digestion. Wang H; Mahle JJ; Tovar TM; Peterson GW; Hall MG; DeCoste JB; Buchanan JH; Karwacki CJ ACS Appl Mater Interfaces; 2019 Jun; 11(23):21109-21116. PubMed ID: 31117457 [TBL] [Abstract][Full Text] [Related]
19. Hydrolysis of VX on concrete: rate of degradation by direct surface interrogation using an ion trap secondary ion mass spectrometer. Groenewold GS; Williams JM; Appelhans AD; Gresham GL; Olson JE; Jeffery MT; Rowland B Environ Sci Technol; 2002 Nov; 36(22):4790-4. PubMed ID: 12487301 [TBL] [Abstract][Full Text] [Related]