BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 26506008)

  • 1. Design of Super-Paramagnetic Core-Shell Nanoparticles for Enhanced Performance of Inverted Polymer Solar Cells.
    Jaramillo J; Boudouris BW; Barrero CA; Jaramillo F
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25061-8. PubMed ID: 26506008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics.
    Janković V; Yang YM; You J; Dou L; Liu Y; Cheung P; Chang JP; Yang Y
    ACS Nano; 2013 May; 7(5):3815-22. PubMed ID: 23627699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge collection enhancement by incorporation of gold-silica core-shell nanoparticles into P3HT:PCBM/ZnO nanorod array hybrid solar cells.
    Wang TC; Su YH; Hung YK; Yeh CS; Huang LW; Gomulya W; Lai LH; Loi MA; Yang JS; Wu JJ
    Phys Chem Chem Phys; 2015 Aug; 17(30):19854-61. PubMed ID: 26159896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced performance in inverted polymer solar cells with D-π-A-type molecular dye incorporated on ZnO buffer layer.
    Song CE; Ryu KY; Hong SJ; Bathula C; Lee SK; Shin WS; Lee JC; Choi SK; Kim JH; Moon SJ
    ChemSusChem; 2013 Aug; 6(8):1445-54. PubMed ID: 23897708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced performance of polymer solar cell with ZnO nanoparticle electron transporting layer passivated by in situ cross-linked three-dimensional polymer network.
    Wu Z; Song T; Xia Z; Wei H; Sun B
    Nanotechnology; 2013 Dec; 24(48):484012. PubMed ID: 24196730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells.
    Wu JL; Chen FC; Hsiao YS; Chien FC; Chen P; Kuo CH; Huang MH; Hsu CS
    ACS Nano; 2011 Feb; 5(2):959-67. PubMed ID: 21229960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ZnO nanoparticles on P3HT:PCBM organic solar cells with DMF-modulated PEDOT:PSS buffer layers.
    Oh SH; Heo SJ; Yang JS; Kim HJ
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11530-4. PubMed ID: 24175740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of interfacial modifiers in hybrid solar cells: inorganic/polymer bilayer vs inorganic/polymer:fullerene bulk heterojunction.
    Eom SH; Baek MJ; Park H; Yan L; Liu S; You W; Lee SH
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):803-10. PubMed ID: 24351036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial Engineering Importance of Bilayered ZnO Cathode Buffer on the Photovoltaic Performance of Inverted Organic Solar Cells.
    Ambade RB; Ambade SB; Mane RS; Lee SH
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7951-60. PubMed ID: 25804557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of inverted-type organic solar cells with a ZnO layer as the electron collection electrode by ac impedance spectroscopy.
    Kuwabara T; Kawahara Y; Yamaguchi T; Takahashi K
    ACS Appl Mater Interfaces; 2009 Oct; 1(10):2107-10. PubMed ID: 20355841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of the organic/inorganic interface on the organic-inorganic hybrid solar cells.
    Ichikawa T; Shiratori S
    J Nanosci Nanotechnol; 2012 May; 12(5):3725-31. PubMed ID: 22852300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diketopyrrolopyrrole-based π-bridged donor-acceptor polymer for photovoltaic applications.
    Li W; Lee T; Oh SJ; Kagan CR
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3874-83. PubMed ID: 21888419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning Open-Circuit Voltage in Organic Solar Cells with Molecular Orientation.
    Kitchen B; Awartani O; Kline RJ; McAfee T; Ade H; O'Connor BT
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13208-16. PubMed ID: 26027430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping the Competition between Exciton Dissociation and Charge Transport in Organic Solar Cells.
    Oh SJ; Kim J; Mativetsky JM; Loo YL; Kagan CR
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28743-28749. PubMed ID: 27696850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle-tuned self-organization of a bulk heterojunction hybrid solar cell with enhanced performance.
    Liao HC; Tsao CS; Lin TH; Jao MH; Chuang CM; Chang SY; Huang YC; Shao YT; Chen CY; Su CJ; Jeng US; Chen YF; Su WF
    ACS Nano; 2012 Feb; 6(2):1657-66. PubMed ID: 22292963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution-processable zinc oxide for the polymer solar cell based on P3HT:PCBM.
    Kim JY; Noh S; Lee D; Nayak PK; Hong Y; Lee C
    J Nanosci Nanotechnol; 2011 Jul; 11(7):5995-6000. PubMed ID: 22121646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic Ag@oxide nanoprisms for enhanced performance of organic solar cells.
    Du P; Jing P; Li D; Cao Y; Liu Z; Sun Z
    Small; 2015 May; 11(20):2454-62. PubMed ID: 25641914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscopic Investigations into the Effect of Surface Treatment of Cathode and Electron Transport Layer on the Performance of Inverted Organic Solar Cells.
    Gupta SK; Jindal R; Garg A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16418-27. PubMed ID: 26158508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bimetallic core-shell nanoparticles to improve the absorption of P3HT: PCBM organic solar cell.
    Piralaee M; Asgari A
    Appl Opt; 2021 Oct; 60(29):9087-9094. PubMed ID: 34623990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Air-stable efficient inverted polymer solar cells using solution-processed nanocrystalline ZnO interfacial layer.
    Tan MJ; Zhong S; Li J; Chen Z; Chen W
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4696-701. PubMed ID: 23646864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.