BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26506132)

  • 1. Predicting Adsorption Affinities of Small Molecules on Carbon Nanotubes Using Molecular Dynamics Simulation.
    Comer J; Chen R; Poblete H; Vergara-Jaque A; Riviere JE
    ACS Nano; 2015 Dec; 9(12):11761-74. PubMed ID: 26506132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics of Adsorption on Graphenic Surfaces from Aqueous Solution.
    Azhagiya Singam ER; Zhang Y; Magnin G; Miranda-Carvajal I; Coates L; Thakkar R; Poblete H; Comer J
    J Chem Theory Comput; 2019 Feb; 15(2):1302-1316. PubMed ID: 30592594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determinants of Alanine Dipeptide Conformational Equilibria on Graphene and Hydroxylated Derivatives.
    Poblete H; Miranda-Carvajal I; Comer J
    J Phys Chem B; 2017 Apr; 121(15):3895-3907. PubMed ID: 28291356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular perspective on diazonium adsorption for controllable functionalization of single-walled carbon nanotubes in aqueous surfactant solutions.
    Lin S; Hilmer AJ; Mendenhall JD; Strano MS; Blankschtein D
    J Am Chem Soc; 2012 May; 134(19):8194-204. PubMed ID: 22530647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption and desorption of atrazine on carbon nanotubes.
    Yan XM; Shi BY; Lu JJ; Feng CH; Wang DS; Tang HX
    J Colloid Interface Sci; 2008 May; 321(1):30-8. PubMed ID: 18294649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomistic Perspective on Biomolecular Adsorption on Functionalized Carbon Nanomaterials under Ambient Conditions.
    Saeedimasine M; Brandt EG; Lyubartsev AP
    J Phys Chem B; 2021 Jan; 125(1):416-430. PubMed ID: 33373230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing the physical-chemical properties of carbon nanotubes (CNT) and graphene nanoplatelets (GNP) on Cu(II) adsorption.
    Rosenzweig S; Sorial GA; Sahle-Demessie E; McAvoy DC
    J Hazard Mater; 2014 Aug; 279():410-7. PubMed ID: 25103452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein adsorption on biomaterial and nanomaterial surfaces: a molecular modeling approach to study non-covalent interactions.
    Raffaini G; Ganazzoli F
    J Appl Biomater Biomech; 2010; 8(3):135-45. PubMed ID: 21337304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes.
    Chen GC; Shan XQ; Zhou YQ; Shen XE; Huang HL; Khan SU
    J Hazard Mater; 2009 Sep; 169(1-3):912-8. PubMed ID: 19442439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nature of molecular interactions of peptides with gold, palladium, and Pd-Au bimetal surfaces in aqueous solution.
    Heinz H; Farmer BL; Pandey RB; Slocik JM; Patnaik SS; Pachter R; Naik RR
    J Am Chem Soc; 2009 Jul; 131(28):9704-14. PubMed ID: 19552440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating adsorption of organic pollutants on finite (8,0) single-walled carbon nanotubes in water.
    Zou M; Zhang J; Chen J; Li X
    Environ Sci Technol; 2012 Aug; 46(16):8887-94. PubMed ID: 22816771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of pollutant aromatics on carbon nanotubes and graphite.
    Ramraj A; Hillier IH
    J Chem Inf Model; 2010 Apr; 50(4):585-8. PubMed ID: 20356088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.
    Brooks AJ; Lim HN; Kilduff JE
    Nanotechnology; 2012 Jul; 23(29):294008. PubMed ID: 22743805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular simulation studies of CO2 adsorption by carbon model compounds for carbon capture and sequestration applications.
    Liu Y; Wilcox J
    Environ Sci Technol; 2013 Jan; 47(1):95-101. PubMed ID: 22747244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and accurate computational modeling of adsorption on graphene: a dispersion interaction challenge.
    Gordeev EG; Polynski MV; Ananikov VP
    Phys Chem Chem Phys; 2013 Nov; 15(43):18815-21. PubMed ID: 24092233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative speciation model for the adsorption of organic pollutants on activated carbon.
    Grivé M; García D; Domènech C; Richard L; Rojo I; Martínez X; Rovira M
    Water Sci Technol; 2013; 68(6):1370-6. PubMed ID: 24056436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of peptide-surface interactions.
    Raut VP; Agashe MA; Stuart SJ; Latour RA
    Langmuir; 2005 Feb; 21(4):1629-39. PubMed ID: 15697318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noncovalent interaction of carbon nanostructures.
    Umadevi D; Panigrahi S; Sastry GN
    Acc Chem Res; 2014 Aug; 47(8):2574-81. PubMed ID: 25032482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of sorption of aromatic and aliphatic organic compounds by carbon nanotubes using poly-parameter linear free-energy relationships.
    Hüffer T; Endo S; Metzelder F; Schroth S; Schmidt TC
    Water Res; 2014 Aug; 59():295-303. PubMed ID: 24813337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.