BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 26506230)

  • 1. Increased Water Storage in the Qaidam Basin, the North Tibet Plateau from GRACE Gravity Data.
    Jiao JJ; Zhang X; Liu Y; Kuang X
    PLoS One; 2015; 10(10):e0141442. PubMed ID: 26506230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terrestrial water storage regime and its change in the endorheic Tibetan Plateau.
    Wang L; Wang J; Wang L; Zhu L; Li X
    Sci Total Environ; 2022 Apr; 815():152729. PubMed ID: 34998774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring the spatio-temporal changes of terrestrial water storage using GRACE data in the Tarim River basin between 2002 and 2015.
    Yang P; Xia J; Zhan C; Qiao Y; Wang Y
    Sci Total Environ; 2017 Oct; 595():218-228. PubMed ID: 28384578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelet and Gaussian Approaches for Estimation of Groundwater Variations Using GRACE Data.
    Fatolazadeh F; Voosoghi B; Naeeni MR
    Ground Water; 2016 Jan; 54(1):74-81. PubMed ID: 25962402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote sensing-based monitoring and evaluation of the basin-wise dynamics of terrestrial water and groundwater storage fluctuations.
    Khorrami B; Gündüz O
    Environ Monit Assess; 2023 Jun; 195(7):868. PubMed ID: 37347293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overview of terrestrial water storage changes over the Indus River Basin based on GRACE/GRACE-FO solutions.
    Zhu Y; Liu S; Yi Y; Xie F; Grünwald R; Miao W; Wu K; Qi M; Gao Y; Singh D
    Sci Total Environ; 2021 Dec; 799():149366. PubMed ID: 34352463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the hydro-geological regime of Yangtze River basin using remotely-sensed and modeled products.
    Ferreira VG; Yong B; Tourian MJ; Ndehedehe CE; Shen Z; Seitz K; Dannouf R
    Sci Total Environ; 2020 May; 718():137354. PubMed ID: 32325611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring groundwater variation by satellite and implications for in-situ gravity measurements.
    Fukuda Y; Yamamoto K; Hasegawa T; Nakaegawa T; Nishijima J; Taniguchi M
    Sci Total Environ; 2009 Apr; 407(9):3173-80. PubMed ID: 18593639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gravimetry-based water storage shifting over the China-India border area controlled by regional climate variability.
    Chun KP; He Q; Fok HS; Ghosh S; Yetemen O; Chen Q; Mijic A
    Sci Total Environ; 2020 Apr; 714():136360. PubMed ID: 31982733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of multi-mission satellite data assimilation for studying water storage changes over South America.
    Khaki M; Awange J
    Sci Total Environ; 2019 Jan; 647():1557-1572. PubMed ID: 30180360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benefits and Pitfalls of GRACE Data Assimilation: a Case Study of Terrestrial Water Storage Depletion in India.
    Girotto M; De Lannoy GJM; Reichle RH; Rodell M; Draper C; Bhanja SN; Mukherjee A
    Geophys Res Lett; 2017 May; 44(9):4107-4115. PubMed ID: 29643570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term groundwater storage variations estimated in the Songhua River Basin by using GRACE products, land surface models, and in-situ observations.
    Chen H; Zhang W; Nie N; Guo Y
    Sci Total Environ; 2019 Feb; 649():372-387. PubMed ID: 30176450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GRACE, GLDAS and measured groundwater data products show water storage loss in Western Jilin, China.
    Moiwo JP; Lu W; Tao F
    Water Sci Technol; 2012; 65(9):1606-14. PubMed ID: 22508123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating satellite observations and human water use data to estimate changes in key components of terrestrial water storage in a semi-arid region of North China.
    Sun W; Jin Y; Yu J; Wang G; Xue B; Zhao Y; Fu Y; Shrestha S
    Sci Total Environ; 2020 Jan; 698():134171. PubMed ID: 31514033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Groundwater Monitoring Using GRACE and GLDAS Data after Downscaling Within Basaltic Aquifer System.
    Verma K; Katpatal YB
    Ground Water; 2020 Jan; 58(1):143-151. PubMed ID: 31359409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogeological characterisation of groundwater over Brazil using remotely sensed and model products.
    Hu K; Awange JL; Khandu ; Forootan E; Goncalves RM; Fleming K
    Sci Total Environ; 2017 Dec; 599-600():372-386. PubMed ID: 28482297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Satellite-based estimates of groundwater depletion in the Badain Jaran Desert, China.
    Jiao JJ; Zhang X; Wang X
    Sci Rep; 2015 Mar; 5():8960. PubMed ID: 25760683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydro-climatic changes and their impacts on vegetation in Xinjiang, Central Asia.
    Yao J; Hu W; Chen Y; Huo W; Zhao Y; Mao W; Yang Q
    Sci Total Environ; 2019 Apr; 660():724-732. PubMed ID: 30743958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of the hydro-ecological environment and its natural and anthropogenic causes during 1985-2019 in the Nenjiang River basin.
    Ma F; Chen J; Chen J; Wang T; Han L; Zhang X; Yan J
    Sci Total Environ; 2021 Dec; 799():149256. PubMed ID: 34358740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of GRACE terrestrial water storage anomalies using Multi-Layer Perceptrons for South Indian River basins.
    Satish Kumar K; AnandRaj P; Sreelatha K; Sridhar V
    Sci Total Environ; 2023 Jan; 857(Pt 2):159289. PubMed ID: 36209880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.