These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26506468)

  • 1. Mechanism of two-photon excited hemoglobin fluorescence emission.
    Sun Q; Zheng W; Wang J; Luo Y; Qu JY
    J Biomed Opt; 2015 Oct; 20(10):105014. PubMed ID: 26506468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large two-photon absorptivity of hemoglobin in the infrared range of 780-880 nm.
    Clay GO; Schaffer CB; Kleinfeld D
    J Chem Phys; 2007 Jan; 126(2):025102. PubMed ID: 17228976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric field allowed molecular transitions for one and two photon excitation microscopy.
    Mondal PP; Diaspro A
    Eur Biophys J; 2008 Jul; 37(6):1073-6. PubMed ID: 18365188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eliminating the scattering ambiguity in multifocal, multimodal, multiphoton imaging systems.
    Hoover EE; Field JJ; Winters DG; Young MD; Chandler EV; Speirs JC; Lapenna JT; Kim SM; Ding SY; Bartels RA; Wang JW; Squier JA
    J Biophotonics; 2012 May; 5(5-6):425-36. PubMed ID: 22461190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy.
    Eggeling C; Volkmer A; Seidel CA
    Chemphyschem; 2005 May; 6(5):791-804. PubMed ID: 15884061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifarious control of two-photon excitation of multiple fluorophores achieved by phase modulation of ultra-broadband laser pulses.
    Isobe K; Suda A; Tanaka M; Kannari F; Kawano H; Mizuno H; Miyawaki A; Midorikawa K
    Opt Express; 2009 Aug; 17(16):13737-46. PubMed ID: 19654781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Studies of physical and chemical properties of the vacuum UV-irradiated molecules of human hemoglobin and its components (heme and globin)].
    Pantiavin AA; Isheeva AK; Artiukhov VG
    Radiats Biol Radioecol; 2011; 51(3):352-6. PubMed ID: 21866835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of combined spectral lifetime microscopy for biology.
    Yan L; Rueden CT; White JG; Eliceiri KW
    Biotechniques; 2006 Sep; 41(3):249, 251, 253 passim. PubMed ID: 16989084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compact multiphoton/single photon laser scanning microscope for spectral imaging and fluorescence lifetime imaging.
    Ulrich V; Fischer P; Riemann I; Königt K
    Scanning; 2004; 26(5):217-25. PubMed ID: 15536977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confocal fluorescence polarization microscopy in turbid media: effects of scattering-induced depolarization.
    Bigelow CE; Foster TH
    J Opt Soc Am A Opt Image Sci Vis; 2006 Nov; 23(11):2932-43. PubMed ID: 17047721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-photon excited hemoglobin fluorescence provides contrast mechanism for label-free imaging of microvasculature in vivo.
    Li D; Zheng W; Zeng Y; Luo Y; Qu JY
    Opt Lett; 2011 Mar; 36(6):834-6. PubMed ID: 21403700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A femtosecond time-resolved investigation of dual fluorescence from N6,N6-dimethyladenine.
    Schwalb NK; Temps F
    Phys Chem Chem Phys; 2006 Nov; 8(44):5229-35. PubMed ID: 17203147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free in vivo imaging of human leukocytes using two-photon excited endogenous fluorescence.
    Zeng Y; Yan B; Sun Q; Teh SK; Zhang W; Wen Z; Qu JY
    J Biomed Opt; 2013 Apr; 18(4):040504. PubMed ID: 23552632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarization modulation of two-photon excited fluorescence in a V-shaped dipicolinate-triphenylamine compound.
    Zeng P; Wang J; Wang C; Li H; Cai P
    Appl Opt; 2015 Nov; 54(31):9167-71. PubMed ID: 26560569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymerized and polyethylene glycol-conjugated hemoglobins: a globin-based calibration curve for dynamic light scattering analysis.
    Faggiano S; Ronda L; Bruno S; Jankevics H; Mozzarelli A
    Anal Biochem; 2010 Jun; 401(2):266-70. PubMed ID: 20184856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence properties of tryptophan residues in the monomeric d-chain of Glossoscolex paulistus hemoglobin: an interpretation based on a comparative molecular model.
    Bosch Cabral C; Imasato H; Rosa JC; Laure HJ; da Silva CH; Tabak M; Garratt RC; Greene LJ
    Biophys Chem; 2002 Jun; 97(2-3):139-57. PubMed ID: 12050006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of α-globin H helix in the building of tetrameric human hemoglobin: interaction with α-hemoglobin stabilizing protein (AHSP) and heme molecule.
    Domingues-Hamdi E; Vasseur C; Fournier JB; Marden MC; Wajcman H; Baudin-Creuza V
    PLoS One; 2014; 9(11):e111395. PubMed ID: 25369055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A coumarin-based two-photon probe for hydrogen peroxide.
    Zhang KM; Dou W; Li PX; Shen R; Ru JX; Liu W; Cui YM; Chen CY; Liu WS; Bai DC
    Biosens Bioelectron; 2015 Feb; 64():542-6. PubMed ID: 25310486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential sensitivity of Chironomus and human hemoglobin to gamma radiation.
    Gaikwad PS; Panicker L; Mohole M; Sawant S; Mukhopadhyaya R; Nath BB
    Biochem Biophys Res Commun; 2016 Aug; 476(4):371-378. PubMed ID: 27237970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast time-resolved fluorescence by two photon absorption excitation.
    Kim CH; Joo T
    Opt Express; 2008 Dec; 16(25):20742-7. PubMed ID: 19065213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.