These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26506512)

  • 1. Silver/silver chloride microneedles can detect penetration through the round window membrane.
    Wazen JM; Stevens JP; Watanabe H; Kysar JW; Lalwani AK
    J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):307-311. PubMed ID: 26506512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug delivery device for the inner ear: ultra-sharp fully metallic microneedles.
    Aksit A; Rastogi S; Nadal ML; Parker AM; Lalwani AK; West AC; Kysar JW
    Drug Deliv Transl Res; 2021 Feb; 11(1):214-226. PubMed ID: 32488817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-vitro perforation of the round window membrane via direct 3-D printed microneedles.
    Aksit A; Arteaga DN; Arriaga M; Wang X; Watanabe H; Kasza KE; Lalwani AK; Kysar JW
    Biomed Microdevices; 2018 Jun; 20(2):47. PubMed ID: 29884927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomical and Functional Consequences of Microneedle Perforation of Round Window Membrane.
    Yu M; Arteaga DN; Aksit A; Chiang H; Olson ES; Kysar JW; Lalwani AK
    Otol Neurotol; 2020 Feb; 41(2):e280-e287. PubMed ID: 31789795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serrated needle design facilitates precise round window membrane perforation.
    Stevens JP; Watanabe H; Kysar JW; Lalwani AK
    J Biomed Mater Res A; 2016 Jul; 104(7):1633-7. PubMed ID: 26914984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-Printed Microneedles Create Precise Perforations in Human Round Window Membrane in Situ.
    Chiang H; Yu M; Aksit A; Wang W; Stern-Shavit S; Kysar JW; Lalwani AK
    Otol Neurotol; 2020 Feb; 41(2):277-284. PubMed ID: 31746817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anatomic, physiologic, and proteomic consequences of repeated microneedle-mediated perforations of the round window membrane.
    Leong S; Aksit A; Szeto B; Feng SJ; Ji X; Soni RK; Olson ES; Kysar JW; Lalwani AK
    Hear Res; 2023 May; 432():108739. PubMed ID: 36966687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dual wedge microneedle for sampling of perilymph solution via round window membrane.
    Watanabe H; Cardoso L; Lalwani AK; Kysar JW
    Biomed Microdevices; 2016 Apr; 18(2):24. PubMed ID: 26888440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel 3D-printed hollow microneedles facilitate safe, reliable, and informative sampling of perilymph from guinea pigs.
    Szeto B; Aksit A; Valentini C; Yu M; Werth EG; Goeta S; Tang C; Brown LM; Olson ES; Kysar JW; Lalwani AK
    Hear Res; 2021 Feb; 400():108141. PubMed ID: 33307286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microperforations significantly enhance diffusion across round window membrane.
    Kelso CM; Watanabe H; Wazen JM; Bucher T; Qian ZJ; Olson ES; Kysar JW; Lalwani AK
    Otol Neurotol; 2015 Apr; 36(4):694-700. PubMed ID: 25310125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inner Ear Diagnostics and Drug Delivery via Microneedles.
    Leong S; Aksit A; Feng SJ; Kysar JW; Lalwani AK
    J Clin Med; 2022 Sep; 11(18):. PubMed ID: 36143121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ag nanotubes and Ag/AgCl electrodes in nanoporous membranes.
    Davenport M; Healy K; Siwy ZS
    Nanotechnology; 2011 Apr; 22(15):155301. PubMed ID: 21389573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of thin layer film evolution near bacterial cellulose membrane by Ag|AgCl electrodes in chamber with lower concentration.
    Grzegorczyn S; Ślęzak A
    PLoS One; 2022; 17(2):e0263059. PubMed ID: 35108308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microneedle-assisted delivery of verapamil hydrochloride and amlodipine besylate.
    Kaur M; Ita KB; Popova IE; Parikh SJ; Bair DA
    Eur J Pharm Biopharm; 2014 Feb; 86(2):284-91. PubMed ID: 24176676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of the Biocompatibility and Potential Stability of Chronically Implanted Electrodes Incorporating Coating Cell Membranes.
    Wang B; Yang P; Ding Y; Qi H; Gao Q; Zhang C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8807-8817. PubMed ID: 30741520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrolyzed Ultrasharp Glassy Carbon Microneedles.
    Zhou C; Aksit A; Szeto B; Li RL; Lalwani AK; Kysar JW
    Adv Eng Mater; 2022 Nov; 24(11):. PubMed ID: 36686328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small molecule delivery across a perforated artificial membrane by thermoreversible hydrogel poloxamer 407.
    Santimetaneedol A; Wang Z; Arteaga DN; Aksit A; Prevoteau C; Yu M; Chiang H; Fafalis D; Lalwani AK; Kysar JW
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110300. PubMed ID: 31326623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced local bioavailability of single or compound drugs delivery to the inner ear through application of PLGA nanoparticles via round window administration.
    Cai H; Wen X; Wen L; Tirelli N; Zhang X; Zhang Y; Su H; Yang F; Chen G
    Int J Nanomedicine; 2014; 9():5591-601. PubMed ID: 25489245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of urinary spermine by using silver-gold/silver chloride nanozymes.
    Kuo PC; Lien CW; Mao JY; Unnikrishnan B; Chang HT; Lin HJ; Huang CC
    Anal Chim Acta; 2018 Jun; 1009():89-97. PubMed ID: 29422136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hollow agarose microneedle with silver coating for intradermal surface-enhanced Raman measurements: a skin-mimicking phantom study.
    Yuen C; Liu Q
    J Biomed Opt; 2015 Jun; 20(6):61102. PubMed ID: 25700332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.