BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26506965)

  • 1. Schwertmannite formation at cell junctions by a new filament-forming Fe(II)-oxidizing isolate affiliated with the novel genus Acidithrix.
    Mori JF; Lu S; Händel M; Totsche KU; Neu TR; Iancu VV; Tarcea N; Popp J; Küsel K
    Microbiology (Reading); 2016 Jan; 162(1):62-71. PubMed ID: 26506965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the structure and metabolic function of microbes that shape pelagic iron-rich aggregates ("iron snow").
    Lu S; Chourey K; Reiche M; Nietzsche S; Shah MB; Neu TR; Hettich RL; Küsel K
    Appl Environ Microbiol; 2013 Jul; 79(14):4272-81. PubMed ID: 23645202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sticking together: inter-species aggregation of bacteria isolated from iron snow is controlled by chemical signaling.
    Mori JF; Ueberschaar N; Lu S; Cooper RE; Pohnert G; Küsel K
    ISME J; 2017 May; 11(5):1075-1086. PubMed ID: 28140394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acidithrix ferrooxidans gen. nov., sp. nov.; a filamentous and obligately heterotrophic, acidophilic member of the Actinobacteria that catalyzes dissimilatory oxido-reduction of iron.
    Jones RM; Johnson DB
    Res Microbiol; 2015; 166(2):111-20. PubMed ID: 25638020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Schwertmannite formation adjacent to bacterial cells in a mine water treatment plant and in pure cultures of Ferrovum myxofaciens.
    Hedrich S; Lünsdorf H; Kleeberg R; Heide G; Seifert J; Schlömann M
    Environ Sci Technol; 2011 Sep; 45(18):7685-92. PubMed ID: 21838259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Draft Genome Sequences of
    Li Q; Cooper RE; Wegner CE; Lu S; Küsel K
    Microbiol Resour Announc; 2021 Jun; 10(25):e0010221. PubMed ID: 34165336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sphaerotilus natans encrusted with nanoball-shaped Fe(III) oxide minerals formed by nitrate-reducing mixotrophic Fe(II) oxidation.
    Park S; Kim DH; Lee JH; Hur HG
    FEMS Microbiol Ecol; 2014 Oct; 90(1):68-77. PubMed ID: 24965827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromium(III) substitution inhibits the Fe(II)-accelerated transformation of schwertmannite.
    Choppala G; Burton ED
    PLoS One; 2018; 13(12):e0208355. PubMed ID: 30517205
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    González D; Huber KJ; Tindall B; Hedrich S; Rojas-Villalobos C; Quatrini R; Dinamarca MA; Ibacache-Quiroga C; Schwarz A; Canales C; Nancucheo I
    Int J Syst Evol Microbiol; 2020 May; 70(5):3348-3354. PubMed ID: 32375942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS.
    Nordhoff M; Tominski C; Halama M; Byrne JM; Obst M; Kleindienst S; Behrens S; Kappler A
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acidibacter ferrireducens gen. nov., sp. nov.: an acidophilic ferric iron-reducing gammaproteobacterium.
    Falagán C; Johnson DB
    Extremophiles; 2014 Nov; 18(6):1067-73. PubMed ID: 25116055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orenia metallireducens sp. nov. Strain Z6, a Novel Metal-Reducing Member of the Phylum Firmicutes from the Deep Subsurface.
    Dong Y; Sanford RA; Boyanov MI; Kemner KM; Flynn TM; O'Loughlin EJ; Chang YJ; Locke RA; Weber JR; Egan SM; Mackie RI; Cann I; Fouke BW
    Appl Environ Microbiol; 2016 Nov; 82(21):6440-6453. PubMed ID: 27565620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron transformations induced by an acid-tolerant Desulfosporosinus species.
    Bertel D; Peck J; Quick TJ; Senko JM
    Appl Environ Microbiol; 2012 Jan; 78(1):81-8. PubMed ID: 22038606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissimilatory ferrous iron oxidation at a low pH: a novel trait identified in the bacterial subclass Rubrobacteridae.
    Bryan CG; Johnson DB
    FEMS Microbiol Lett; 2008 Nov; 288(2):149-55. PubMed ID: 18803673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate loading alters schwertmannite transformation rates and pathways during microbial reduction.
    Schoepfer VA; Burton ED; Johnston SG; Kraal P
    Sci Total Environ; 2019 Mar; 657():770-780. PubMed ID: 30677942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of chloride and sulfate on formation of akaganéite and schwertmannite through ferrous biooxidation by Acidithiobacillus ferrooxidans cells.
    Xiong H; Liao Y; Zhou L
    Environ Sci Technol; 2008 Dec; 42(23):8681-6. PubMed ID: 19192781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing Bacteria.
    Peng C; Bryce C; Sundman A; Kappler A
    Appl Environ Microbiol; 2019 Apr; 85(8):. PubMed ID: 30796062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite.
    Burton ED; Johnston SG; Watling K; Bush RT; Keene AF; Sullivan LA
    Environ Sci Technol; 2010 Mar; 44(6):2016-21. PubMed ID: 20148551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation, identification and arsenic-resistance of Acidithiobacillus ferrooxidans HX3 producing schwertmannite.
    Xu Y; Yang M; Yao T; Xiong H
    J Environ Sci (China); 2014 Jul; 26(7):1463-70. PubMed ID: 25079995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.
    Miot J; Benzerara K; Morin G; Bernard S; Beyssac O; Larquet E; Kappler A; Guyot F
    Geobiology; 2009 Jun; 7(3):373-84. PubMed ID: 19573166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.