These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 26507080)
1. Chemical Vapor Deposition of FeOCl Nanosheet Arrays and Their Conversion to Porous α-Fe2 O3 Photoanodes for Photoelectrochemical Water Splitting. Wang CW; Yang S; Jiang HB; Yang H Chemistry; 2015 Dec; 21(50):18024-8. PubMed ID: 26507080 [TBL] [Abstract][Full Text] [Related]
2. Controlled Growth of Ferrihydrite Branched Nanosheet Arrays and Their Transformation to Hematite Nanosheet Arrays for Photoelectrochemical Water Splitting. Ji M; Cai J; Ma Y; Qi L ACS Appl Mater Interfaces; 2016 Feb; 8(6):3651-60. PubMed ID: 26517010 [TBL] [Abstract][Full Text] [Related]
3. Enhanced Performance of Photoelectrochemical Water Splitting with ITO@α-Fe2O3 Core-Shell Nanowire Array as Photoanode. Yang J; Bao C; Yu T; Hu Y; Luo W; Zhu W; Fu G; Li Z; Gao H; Li F; Zou Z ACS Appl Mater Interfaces; 2015 Dec; 7(48):26482-90. PubMed ID: 26565922 [TBL] [Abstract][Full Text] [Related]
4. Sb-Doped SnO Han H; Kment S; Karlicky F; Wang L; Naldoni A; Schmuki P; Zboril R Small; 2018 May; 14(19):e1703860. PubMed ID: 29655304 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Charge Separation through ALD-Modified Fe2 O3 /Fe2 TiO5 Nanorod Heterojunction for Photoelectrochemical Water Oxidation. Li C; Wang T; Luo Z; Liu S; Gong J Small; 2016 Jul; 12(25):3415-22. PubMed ID: 27197643 [TBL] [Abstract][Full Text] [Related]
6. CdS/Zr:Fe Mahadik MA; Subramanian A; Chung HS; Cho M; Jang JS ChemSusChem; 2017 May; 10(9):2030-2039. PubMed ID: 28317268 [TBL] [Abstract][Full Text] [Related]
7. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System. Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672 [TBL] [Abstract][Full Text] [Related]
8. Toward High-Performance Hematite Nanotube Photoanodes: Charge-Transfer Engineering at Heterointerfaces. Kim do H; Andoshe DM; Shim YS; Moon CW; Sohn W; Choi S; Kim TL; Lee M; Park H; Hong K; Kwon KC; Suh JM; Kim JS; Lee JH; Jang HW ACS Appl Mater Interfaces; 2016 Sep; 8(36):23793-800. PubMed ID: 27551887 [TBL] [Abstract][Full Text] [Related]
9. Hierarchical hematite nanoplatelets for photoelectrochemical water splitting. Marelli M; Naldoni A; Minguzzi A; Allieta M; Virgili T; Scavia G; Recchia S; Psaro R; Dal Santo V ACS Appl Mater Interfaces; 2014 Aug; 6(15):11997-2004. PubMed ID: 25007400 [TBL] [Abstract][Full Text] [Related]
10. Enhanced Photoelectrochemical Water Oxidation Performance in Bilayer TiO Li H; Yin M; Li X; Mo R ChemSusChem; 2021 Jun; 14(11):2331-2340. PubMed ID: 33650268 [TBL] [Abstract][Full Text] [Related]
11. Dual-Axial Gradient Doping (Zr and Sn) on Hematite for Promoting Charge Separation in Photoelectrochemical Water Splitting. Chen D; Liu Z ChemSusChem; 2018 Oct; 11(19):3438-3448. PubMed ID: 30098118 [TBL] [Abstract][Full Text] [Related]
12. Photoanodes with Fully Controllable Texture: The Enhanced Water Splitting Efficiency of Thin Hematite Films Exhibiting Solely (110) Crystal Orientation. Kment S; Schmuki P; Hubicka Z; Machala L; Kirchgeorg R; Liu N; Wang L; Lee K; Olejnicek J; Cada M; Gregora I; Zboril R ACS Nano; 2015 Jul; 9(7):7113-23. PubMed ID: 26083741 [TBL] [Abstract][Full Text] [Related]
13. Enhanced photoelectrochemical water splitting efficiency of a hematite-ordered Sb:SnO2 host-guest system. Wang L; Palacios-Padrós A; Kirchgeorg R; Tighineanu A; Schmuki P ChemSusChem; 2014 Feb; 7(2):421-4. PubMed ID: 24449523 [TBL] [Abstract][Full Text] [Related]
14. Enhanced photocurrent density of hematite thin films on FTO substrates: effect of post-annealing temperature. Cho ES; Kang MJ; Kang YS Phys Chem Chem Phys; 2015 Jun; 17(24):16145-50. PubMed ID: 26032403 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of CuFe Hussain S; Hussain S; Waleed A; Tavakoli MM; Wang Z; Yang S; Fan Z; Nadeem MA ACS Appl Mater Interfaces; 2016 Dec; 8(51):35315-35322. PubMed ID: 28027650 [TBL] [Abstract][Full Text] [Related]
16. Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays. Shen S; Guo P; Wheeler DA; Jiang J; Lindley SA; Kronawitter CX; Zhang JZ; Guo L; Mao SS Nanoscale; 2013 Oct; 5(20):9867-74. PubMed ID: 23974247 [TBL] [Abstract][Full Text] [Related]
17. Hierarchical three-dimensional branched hematite nanorod arrays with enhanced mid-visible light absorption for high-efficiency photoelectrochemical water splitting. Wang D; Chang G; Zhang Y; Chao J; Yang J; Su S; Wang L; Fan C; Wang L Nanoscale; 2016 Jul; 8(25):12697-701. PubMed ID: 27283270 [TBL] [Abstract][Full Text] [Related]
18. A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting. Wang L; Nguyen NT; Schmuki P ChemSusChem; 2016 Aug; 9(16):2048-53. PubMed ID: 27348809 [TBL] [Abstract][Full Text] [Related]
19. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation. Diab M; Mokari T Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819 [TBL] [Abstract][Full Text] [Related]
20. Surviving High-Temperature Calcination: ZrO Li C; Li A; Luo Z; Zhang J; Chang X; Huang Z; Wang T; Gong J Angew Chem Int Ed Engl; 2017 Apr; 56(15):4150-4155. PubMed ID: 28220996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]