These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26507096)

  • 1. Atomistic bond relaxation, energy entrapment, and electron polarization of the RbN and CsN clusters (N ≤ 58).
    Guo Y; Bo M; Wang Y; Liu Y; Huang Y; Sun CQ
    Phys Chem Chem Phys; 2015 Nov; 17(45):30389-97. PubMed ID: 26507096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordination-Resolved Spectrometrics of Local Bonding and Electronic Dynamics of Au Atomic Clusters, Solid Skins, and Oxidized Foils.
    Yu W; Bo M; Huang Y; Wang Y; Li C; Sun CQ
    Chemphyschem; 2015 Jul; 16(10):2159-64. PubMed ID: 25916877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Layer and orientation resolved bond relaxation and quantum entrapment of charge and energy at Be surfaces.
    Wang Y; Nie YG; Pan JS; Pan L; Sun Z; Sun CQ
    Phys Chem Chem Phys; 2010 Oct; 12(39):12753-9. PubMed ID: 20734009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bond order resolved 3d5/2 and valence band chemical shifts of ag surfaces and nanoclusters.
    Qin W; Wang Y; Huang Y; Zhou Z; Yang C; Sun CQ
    J Phys Chem A; 2012 Aug; 116(30):7892-7. PubMed ID: 22716312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skin Bond Electron Relaxation Dynamics of Germanium Manipulated by Interactions with H2 , O2 , H2 O, H2 O2 , HF, and Au.
    Wu L; Bo M; Guo Y; Wang Y; Li C; Huang Y; Sun CQ
    Chemphyschem; 2016 Jan; 17(2):310-6. PubMed ID: 26488077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skin-resolved local bond contraction, core electron entrapment, and valence charge polarization of Ag and Cu nanoclusters.
    Ahmadi S; Zhang X; Gong Y; Chia CH; Sun CQ
    Phys Chem Chem Phys; 2014 May; 16(19):8940-8. PubMed ID: 24691894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local structure relaxation, quantum trap depression, and valence charge polarization induced by the shorter-and-stronger bonds between under-coordinated atoms in gold nanostructures.
    Zhang X; Kuo JL; Gu M; Fan X; Bai P; Song QG; Sun CQ
    Nanoscale; 2010 Mar; 2(3):412-7. PubMed ID: 20644825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic under-coordination fascinated catalytic and magnetic behavior of Pt and Rh nanoclusters.
    Ahmadi S; Zhang X; Gong Y; Sun CQ
    Phys Chem Chem Phys; 2014 Oct; 16(38):20537-47. PubMed ID: 25146303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-suppressed dielectrics of Ge nanocrystals: skin-deep quantum entrapment.
    Goh ES; Chen TP; Yang HY; Liu Y; Sun CQ
    Nanoscale; 2012 Feb; 4(4):1308-11. PubMed ID: 22273715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purified rhodium edge states: undercoordination-induced quantum entrapment and polarization.
    Zheng W; Zhou J; Sun CQ
    Phys Chem Chem Phys; 2010 Oct; 12(39):12494-8. PubMed ID: 20721394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic binding energy and thermal relaxation of Li and LiNa atomic alloying clusters.
    Bo M; Guo Y; Wang Y; Liu Y; Peng C; Sun CQ; Huang Y
    Phys Chem Chem Phys; 2016 May; 18(19):13280-6. PubMed ID: 27117008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio calculations for the Zn 2s and 2p core level binding energies in Zn oxo compounds and ZnO.
    Rössler N; Kotsis K; Staemmler V
    Phys Chem Chem Phys; 2006 Feb; 8(6):697-706. PubMed ID: 16482309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A common supersolid skin covering both water and ice.
    Zhang X; Huang Y; Ma Z; Zhou Y; Zheng W; Zhou J; Sun CQ
    Phys Chem Chem Phys; 2014 Nov; 16(42):22987-94. PubMed ID: 25198167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The electronic structure and the nature of the chemical bond in CeO
    Maslakov KI; Teterin YA; Ryzhkov MV; Popel AJ; Teterin AY; Ivanov KE; Kalmykov SN; Petrov VG; Petrov PK; Farnan I
    Phys Chem Chem Phys; 2018 Jun; 20(23):16167-16175. PubMed ID: 29855651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Combined X-Ray Photoelectron and Auger Electron Spectroscopic Study of Cesium in Variable-Charge Montmorillonites.
    Dutta NC; Iwasaki T; Ebina T; Hayashi H
    J Colloid Interface Sci; 1999 Aug; 216(1):161-166. PubMed ID: 10395774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dominance of broken bonds and nonbonding electrons at the nanoscale.
    Sun CQ
    Nanoscale; 2010 Oct; 2(10):1930-61. PubMed ID: 20820643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative ions of nitroethane and its clusters.
    Stokes ST; Bowen KH; Sommerfeld T; Ard S; Mirsaleh-Kohan N; Steill JD; Compton RN
    J Chem Phys; 2008 Aug; 129(6):064308. PubMed ID: 18715070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The arsenic clusters Asn (n = 1-5) and their anions: structures, thermochemistry, and electron affinities.
    Zhao Y; Xu W; Li Q; Xie Y; Schaefer HF
    J Comput Chem; 2004 May; 25(7):907-20. PubMed ID: 15027104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Kohn-Sham density of states and band gap of water: from small clusters to liquid water.
    Cabral do Couto P; Estácio SG; Costa Cabral BJ
    J Chem Phys; 2005 Aug; 123(5):054510. PubMed ID: 16108672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the electronic and structural properties of chromium oxide clusters (CrO3)n(-) and (CrO3)n (n = 1-5): photoelectron spectroscopy and density functional calculations.
    Zhai HJ; Li S; Dixon DA; Wang LS
    J Am Chem Soc; 2008 Apr; 130(15):5167-77. PubMed ID: 18327905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.